论文标题

关键指标和覆盖号码

Critical Metrics and Covering Number

论文作者

Freedman, Mike

论文摘要

在量子计算和黑洞物理学中,很自然地将某些变形,无穷小的单位视为\ emph {easy},而其他则为\ emph {hard}。这导致对$ \ operatatorName {su}(2^n)$的右转指标进行了重新检查。已经假设存在关键的这种指标 - 从相位的意义上讲 - 提出了一种猜想的形式。在本说明中,我们探讨了一个限制,即在关键指标的全球几何形状上的共同体学上的环结构。

In both quantum computing and black hole physics, it is natural to regard some deformations, infinitesimal unitaries, as \emph{easy} and others as \emph{hard}. This has lead to a renewed examination of right-invariant metrics on $\operatorname{SU}(2^N)$. It has been hypothesized that there is a critical such metric -- in the sense of phase transitions -- and a conjectural form suggested. In this note we explore a restriction that the ring structure on cohomology places on the global geometry of a critical metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源