论文标题

$ u $ -spin振幅总和规则的数学结构

The Mathematical Structure of $U$-Spin Amplitude Sum Rules

论文作者

Gavrilova, Margarita, Grossman, Yuval, Schacht, Stefan

论文摘要

我们对$ su(2)$风味振幅总和规则进行系统研究,并特别强调$ u $ -spin。这项研究揭示了总和规则基础的丰富数学结构,该结构使我们能够为将所有$ u u $ -spin振幅总和规则推导到对称性破坏的任何顺序。这种得出总和规则的新颖方法不需要明确计算Clebsch-Gordan表,并允许简单的图解解释。几个示例证明了我们的新方法在可以实验探测的系统中应用的系统。

We perform a systematic study of $SU(2)$ flavor amplitude sum rules with particular emphasis on $U$-spin. This study reveals a rich mathematical structure underlying the sum rules that allows us to formulate an algorithm for deriving all $U$-spin amplitude sum rules to any order of the symmetry breaking. This novel approach to deriving the sum rules does not require one to explicitly compute the Clebsch-Gordan tables, and allows for simple diagrammatic interpretation. Several examples that demonstrate the application of our novel method to systems that can be probed experimentally are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源