论文标题
$ u $ -spin振幅总和规则的数学结构
The Mathematical Structure of $U$-Spin Amplitude Sum Rules
论文作者
论文摘要
我们对$ su(2)$风味振幅总和规则进行系统研究,并特别强调$ u $ -spin。这项研究揭示了总和规则基础的丰富数学结构,该结构使我们能够为将所有$ u u $ -spin振幅总和规则推导到对称性破坏的任何顺序。这种得出总和规则的新颖方法不需要明确计算Clebsch-Gordan表,并允许简单的图解解释。几个示例证明了我们的新方法在可以实验探测的系统中应用的系统。
We perform a systematic study of $SU(2)$ flavor amplitude sum rules with particular emphasis on $U$-spin. This study reveals a rich mathematical structure underlying the sum rules that allows us to formulate an algorithm for deriving all $U$-spin amplitude sum rules to any order of the symmetry breaking. This novel approach to deriving the sum rules does not require one to explicitly compute the Clebsch-Gordan tables, and allows for simple diagrammatic interpretation. Several examples that demonstrate the application of our novel method to systems that can be probed experimentally are provided.