论文标题
量子(统计)测量理论
A theory of quantum (statistical) measurement
论文作者
论文摘要
我们提出了一种量子(统计)测量的理论,它在精神上与Hepp的理论紧密相关,该理论集中在变质和宏观(古典)可观察的概念上,并将其应用于船尾 - 盖拉赫实验的模型。 $ n \ to \ iftty $的测量设备的自由度n数量n,证明了形容词的“统计”是合理的,但是,此外,与HEPP相反,我们做出了三倍的假设:测量不是瞬间的,并非持续的时间,并持续到有限的准确性,并在任意方面进行了限制的确定性,并在有限的情况下进行了有限的效果,以实现有限的效果,以实现有限的效果,以实现有限的效果。 Basdevant和Dalibard。然后展示了冯·诺伊曼(Von Neumann)的“崩溃假设”如何通过数学上精确的戈特弗里德(Gottfried)论证的精确表述来避免,同时消除了海森贝格(Heisenbeg)的“毁灭知识”悖论。由于后者的亲和力,根据作者的不可逆性理论,没有任何不可逆性附在衡量过程中,这一事实遵循作者的不可逆性理论。
We propose a theory of quantum (statistical) measurement which is close, in spirit, to Hepp's theory, which is centered on the concepts of decoherence and macroscopic (classical) observables, and apply it to a model of the Stern-Gerlach experiment. The number N of degrees of freedom of the measuring apparatus is such that $N \to \infty$, justifying the adjective "statistical", but, in addition, and in contrast to Hepp's approach, we make a three-fold assumption: the measurement is not instantaneous, it lasts a finite amount of time and is, up to arbitrary accuracy, performed in a finite region of space, in agreement with the additional axioms proposed by Basdevant and Dalibard. It is then shown how von Neumann's "collapse postulate" may be avoided by a mathematically precise formulation of an argument of Gottfried, and, at the same time, Heisenbeg's "destruction of knowledge" paradox is eliminated. The fact that no irreversibility is attached to the process of measurement is shown to follow from the author's theory of irreversibility, formulated in terms of the mean entropy, due to the latter's property of affinity.