论文标题

使用TOP-ADMM在大规模MIMO-OFD中使用PAPR和ACLR约束缓解EVM

EVM Mitigation with PAPR and ACLR Constraints in Large-Scale MIMO-OFDM Using TOP-ADMM

论文作者

Kant, Shashi, Bengtsson, Mats, Fodor, Gabor, Göransson, Bo, Fischione, Carlo

论文摘要

尽管基于信号失真的峰值到平均功率比(PAPR)降低是正交频施加多元型(OFDM)的可行候选者,以满足标准/调节要求,但PAPR减少的误差矢量幅度(EVM)对高数据率实现高数据率的多种数据输入(MIMO)系统的性能有害影响。此外,这些系统必须限制相邻的通道泄漏比(ACLR)以符合监管要求。最近的几项工作调查了通过利用大规模MIMO固有的过剩空间维度来调查了接收器在接收器上看到的EVM,该空间尺寸假设具有与空间无关的无线通道的完美通道状态信息(CSI)的可用性。不幸的是,实用系统使用错误的CSI和空间相关的通道运行。此外,大多数标准都支持用户特定/CSI Aware Beam形成和细胞特异性/非CSI认知的广播渠道。因此,我们在通道不确定性下使用非凸PPR和ACLR约束来满足波束成形/广播的限制,从而制定了强大的EVM缓解问题。为了解决这个巨大的问题,我们使用我们最近提出的乘数(top-admm)算法的最近提出的三操作方向方法开发了有效的方案,并根据先前用于机器学习目的提出的两种三个三操作算法对其进行基准测试。数值结果表明,在不完美的CSI和空间相关的通道下,所提出的算法的功效。

Although signal distortion-based peak-to-average power ratio (PAPR) reduction is a feasible candidate for orthogonal frequency division multiplexing (OFDM) to meet standard/regulatory requirements, the error vector magnitude (EVM) stemming from the PAPR reduction has a deleterious impact on the performance of high data-rate achieving multiple-input multiple-output (MIMO) systems. Moreover, these systems must constrain the adjacent channel leakage ratio (ACLR) to comply with regulatory requirements. Several recent works have investigated the mitigation of the EVM seen at the receivers by capitalizing on the excess spatial dimensions inherent in the large-scale MIMO that assume the availability of perfect channel state information (CSI) with spatially uncorrelated wireless channels. Unfortunately, practical systems operate with erroneous CSI and spatially correlated channels. Additionally, most standards support user-specific/CSI-aware beamformed and cell-specific/non-CSI-aware broadcasting channels. Hence, we formulate a robust EVM mitigation problem under channel uncertainty with nonconvex PAPR and ACLR constraints catering to beamforming/broadcasting. To solve this formidable problem, we develop an efficient scheme using our recently proposed three-operator alternating direction method of multipliers (TOP-ADMM) algorithm and benchmark it against two three-operator algorithms previously presented for machine learning purposes. Numerical results show the efficacy of the proposed algorithm under imperfect CSI and spatially correlated channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源