论文标题

AO2-DER:任意面向对象检测变压器

AO2-DETR: Arbitrary-Oriented Object Detection Transformer

论文作者

Dai, Linhui, Liu, Hong, Tang, Hao, Wu, Zhiwei, Song, Pinhao

论文摘要

任意面向对象检测(AOOD)是一项具有挑战性的任务,可以用任意方向和混乱的安排来检测野外的对象。现有方法主要基于基于锚的框或密集点,这些框或密集的点依赖于复杂的手工设计的处理步骤和电感偏见,例如锚定,转换和非最大最大抑制作用。最近,基于新兴变压器的方法将对象检测视为一个直接设置的预测问题,可有效消除对手工设计的组件和归纳偏见的需求。在本文中,我们提出了一个任意面向的对象检测变压器框架,称为ao2-detr,该框架包括三个专用组件。更确切地说,提出了一种定向的提案生成机制来显式生成定向的建议,该提议为汇总特征提供了更好的位置先验,以调节变压器解码器中的跨注意。引入了面向自适应的建议改进模块,以提取旋转不变的区域特征并消除区域特征和物体之间的不对准。并且使用旋转的集合匹配损失用于确保直接设置预测的一对一匹配过程,而无需重复预测。我们的方法大大简化了整个管道,并提出了新的Aood范式。在几个具有挑战性的数据集上进行的全面实验表明,我们的方法在AOED任务上实现了卓越的性能。

Arbitrary-oriented object detection (AOOD) is a challenging task to detect objects in the wild with arbitrary orientations and cluttered arrangements. Existing approaches are mainly based on anchor-based boxes or dense points, which rely on complicated hand-designed processing steps and inductive bias, such as anchor generation, transformation, and non-maximum suppression reasoning. Recently, the emerging transformer-based approaches view object detection as a direct set prediction problem that effectively removes the need for hand-designed components and inductive biases. In this paper, we propose an Arbitrary-Oriented Object DEtection TRansformer framework, termed AO2-DETR, which comprises three dedicated components. More precisely, an oriented proposal generation mechanism is proposed to explicitly generate oriented proposals, which provides better positional priors for pooling features to modulate the cross-attention in the transformer decoder. An adaptive oriented proposal refinement module is introduced to extract rotation-invariant region features and eliminate the misalignment between region features and objects. And a rotation-aware set matching loss is used to ensure the one-to-one matching process for direct set prediction without duplicate predictions. Our method considerably simplifies the overall pipeline and presents a new AOOD paradigm. Comprehensive experiments on several challenging datasets show that our method achieves superior performance on the AOOD task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源