论文标题
移情对话:上下文化对话的多级数据集
Empathic Conversations: A Multi-level Dataset of Contextualized Conversations
论文作者
论文摘要
移情是对他人观察到的情况的认知和情感反应。移情最近引起了人们的兴趣,因为它在心理学和AI中具有许多应用,但是目前尚不清楚与其他情感现象或人口统计学或人口统计学(如性别和年龄)相互作用的不同形式的同理心(例如,自我报告与对应的其他报告,关注与遇险)如何如何。为了更好地理解这一点,我们创建了{\ IT移情对话}的数据集,该数据集是注释的否定的,同理心解释的对话,其中一对参与者成对就与新闻文章进行了交谈。人们对他人的同理心的看法有所不同。这些差异与某些特征有关,例如人格和人口统计。因此,我们收集了参与者特征的详细表征,他们对新闻文章的自我报告的同情反应,他们的对话伙伴的其他报告以及对自我披露,情感和同理心水平的逐个转变的第三方评估。该数据集是第一个以多种形式提出同理心以及个人困扰,情感,人格特征和人口统计学信息的数据集。我们提出了基线模型,以预测对话中的一些功能。
Empathy is a cognitive and emotional reaction to an observed situation of others. Empathy has recently attracted interest because it has numerous applications in psychology and AI, but it is unclear how different forms of empathy (e.g., self-report vs counterpart other-report, concern vs. distress) interact with other affective phenomena or demographics like gender and age. To better understand this, we created the {\it Empathic Conversations} dataset of annotated negative, empathy-eliciting dialogues in which pairs of participants converse about news articles. People differ in their perception of the empathy of others. These differences are associated with certain characteristics such as personality and demographics. Hence, we collected detailed characterization of the participants' traits, their self-reported empathetic response to news articles, their conversational partner other-report, and turn-by-turn third-party assessments of the level of self-disclosure, emotion, and empathy expressed. This dataset is the first to present empathy in multiple forms along with personal distress, emotion, personality characteristics, and person-level demographic information. We present baseline models for predicting some of these features from conversations.