论文标题

均匀的bismut ricci平坦歧管的无限家族

Infinite families of homogeneous Bismut Ricci flat manifolds

论文作者

Podestà, Fabio, Raffero, Alberto

论文摘要

从内部类型的紧凑型对称空间开始,我们提供了无限的紧凑型均匀空间的家族,并带有不变的非灯泡连接,并带有消失的ricci张量。这些例子被证明是订单$ 4 $的普遍对称空间,并且(覆盖范围)可以实现为Bismut平坦模型空间的最小亚货物,即紧凑型谎言组。这种结构概括了对称空间的标准曲琴嵌入。

Starting from compact symmetric spaces of inner type, we provide infinite families of compact homogeneous spaces carrying invariant non-flat Bismut connections with vanishing Ricci tensor. These examples turn out to be generalized symmetric spaces of order $4$ and (up to coverings) can be realized as minimal submanifolds of the Bismut flat model spaces, namely compact Lie groups. This construction generalizes the standard Cartan embedding of symmetric spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源