论文标题
均匀的bismut ricci平坦歧管的无限家族
Infinite families of homogeneous Bismut Ricci flat manifolds
论文作者
论文摘要
从内部类型的紧凑型对称空间开始,我们提供了无限的紧凑型均匀空间的家族,并带有不变的非灯泡连接,并带有消失的ricci张量。这些例子被证明是订单$ 4 $的普遍对称空间,并且(覆盖范围)可以实现为Bismut平坦模型空间的最小亚货物,即紧凑型谎言组。这种结构概括了对称空间的标准曲琴嵌入。
Starting from compact symmetric spaces of inner type, we provide infinite families of compact homogeneous spaces carrying invariant non-flat Bismut connections with vanishing Ricci tensor. These examples turn out to be generalized symmetric spaces of order $4$ and (up to coverings) can be realized as minimal submanifolds of the Bismut flat model spaces, namely compact Lie groups. This construction generalizes the standard Cartan embedding of symmetric spaces.