论文标题

通过表达树推理检测策略合规性检测

Policy Compliance Detection via Expression Tree Inference

论文作者

Kotonya, Neema, Vlachos, Andreas, Yazdani, Majid, Mathias, Lambert, Saeidi, Marzieh

论文摘要

策略合规检测(PCD)是我们在文本上推理时遇到的任务,例如法律框架。以前的解决PCD的工作在很大程度上依赖于将任务建模为识别文本需要的特殊情况。元素适用于PCD的问题,但是将政策视为一个单一命题,而不是多个相互联系的主张,会产生较差的性能,并且缺乏解释性。为了应对这一挑战,对PCD的最新建议提出将政策分解为由与逻辑运营商有关的问题组成的表达树。问题回答用于获得有关场景的这些问题的答案。最后,评估表达树以达到整体解决方案。但是,这项工作假设表达树是由专家提供的,因此将其适用性限制在新政策中。在这项工作中,我们学习如何从策略文本自动推断表达树。我们通过使用有限状态自动机引入受限的解码来确保生成有效树的有效性。我们通过自动评估确定,我们受约束生成模型产生的63%的表达树在逻辑上等同于金树。人类评估表明,我们的模型产生的树木中有88%是正确的。

Policy Compliance Detection (PCD) is a task we encounter when reasoning over texts, e.g. legal frameworks. Previous work to address PCD relies heavily on modeling the task as a special case of Recognizing Textual Entailment. Entailment is applicable to the problem of PCD, however viewing the policy as a single proposition, as opposed to multiple interlinked propositions, yields poor performance and lacks explainability. To address this challenge, more recent proposals for PCD have argued for decomposing policies into expression trees consisting of questions connected with logic operators. Question answering is used to obtain answers to these questions with respect to a scenario. Finally, the expression tree is evaluated in order to arrive at an overall solution. However, this work assumes expression trees are provided by experts, thus limiting its applicability to new policies. In this work, we learn how to infer expression trees automatically from policy texts. We ensure the validity of the inferred trees by introducing constrained decoding using a finite state automaton to ensure the generation of valid trees. We determine through automatic evaluation that 63% of the expression trees generated by our constrained generation model are logically equivalent to gold trees. Human evaluation shows that 88% of trees generated by our model are correct.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源