论文标题
Neur2SP:神经两阶段随机编程
Neur2SP: Neural Two-Stage Stochastic Programming
论文作者
论文摘要
随机编程是在不确定性下进行决策的强大建模框架。在这项工作中,我们解决了两阶段随机程序(2SP),这是最广泛使用的随机编程模型。求解2SPS需要在计算上棘手的预期值函数上进行优化。即使使用专门的算法利用问题结构的专业算法,在第二阶段具有混合企业线性程序(MIP)或非线性程序(NLP)。在这种情况下,找到高质量的(第一阶段)解决方案 - 不利用问题结构 - 至关重要。我们开发了Neur2SP,这是一种新方法,该方法通过神经网络近似期望值函数,以获得可以比传统的广泛配方方法更有效地求解的替代模型。 Neur2SP对问题结构没有任何假设,特别是关于第二阶段问题,并且可以使用现成的MIP求解器实现。我们对具有不同结构(包含MIP和NLP第二阶段问题)的四个基准2SP问题类的广泛计算实验证明了Neur2SP的效率(时间)和功效(解决方案质量)。在不到1.66秒的时间内,Neur2SP在所有问题的数量增加时都发现了所有问题的高质量解决方案,这是传统2SP解决方案技术难以拥有的理想属性。也就是说,最通用的基线方法通常需要几分钟到数小时才能找到可比质量的解决方案。
Stochastic Programming is a powerful modeling framework for decision-making under uncertainty. In this work, we tackle two-stage stochastic programs (2SPs), the most widely used class of stochastic programming models. Solving 2SPs exactly requires optimizing over an expected value function that is computationally intractable. Having a mixed-integer linear program (MIP) or a nonlinear program (NLP) in the second stage further aggravates the intractability, even when specialized algorithms that exploit problem structure are employed. Finding high-quality (first-stage) solutions -- without leveraging problem structure -- can be crucial in such settings. We develop Neur2SP, a new method that approximates the expected value function via a neural network to obtain a surrogate model that can be solved more efficiently than the traditional extensive formulation approach. Neur2SP makes no assumptions about the problem structure, in particular about the second-stage problem, and can be implemented using an off-the-shelf MIP solver. Our extensive computational experiments on four benchmark 2SP problem classes with different structures (containing MIP and NLP second-stage problems) demonstrate the efficiency (time) and efficacy (solution quality) of Neur2SP. In under 1.66 seconds, Neur2SP finds high-quality solutions across all problems even as the number of scenarios increases, an ideal property that is difficult to have for traditional 2SP solution techniques. Namely, the most generic baseline method typically requires minutes to hours to find solutions of comparable quality.