论文标题

在标量曲率和衡量性的喷雾剂上

On Sprays of Scalar Curvature and Metrizability

论文作者

Yang, Guojun

论文摘要

每个Finsler指标自然都会诱发喷雾,但并非如此。标量(各向同性)曲率喷雾剂的概念被称为标量标量(各向同性)标志性标志曲率曲率的概括。在本文中,引入了一个新的概念,即恒定曲率的喷雾,尤其是表明,即使在尺寸$ n \ ge3 $中,各向同性曲率的喷雾也不一定是恒定曲率。此外,给出了各向同性(恒定)曲率喷雾剂的完整条件,为Finsler-Metrizabile。由于这种结果的应用,确定了局部结构的局部局部结构,该局部结构是在局部的弯曲(分别恒定)曲率的曲线,这些曲率是Finsler-oterizable的,并且还讨论了更多的各向同性曲率的喷雾剂。此外,在某些曲率条件下,还研究了标态曲率喷雾剂的衡量性问题。

Every Finsler metric naturally induces a spray but not so for the converse. The notion for sprays of scalar (resp. isotropic) curvature has been known as a generalization for Finsler metrics of scalar (resp. isotropic) flag curvature. In this paper, a new notion, sprays of constant curvature, is introduced and especially it shows that a spray of isotropic curvature is not necessarily of constant curvature even in dimension $n\ge3$. Further, complete conditions are given for sprays of isotropic (resp. constant) curvature to be Finsler-metrizabile. As applications of such a result, the local structure is determined for locally projectively flat Berwald sprays of isotropic (resp. constant) curvature which are Finsler-metrizable, and some more sprays of isotropic curvature are discussed for their metrizability. Besides, the metrizability problem is also investigated for sprays of scalar curvature under certain curvature conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源