论文标题

混沌量子多体系统中的实时相关器

Real-time correlators in chaotic quantum many-body systems

论文作者

Nahum, Adam, Roy, Sthitadhi, Vijay, Sagar, Zhou, Tianci

论文摘要

我们研究实时本地相关器$ \ langle \ mathcal {o}(\ mathbf {x},t),t)\ mathcal {o}(0,0)\ rangle $在混乱的量子多体系统中。这些相关器在后期显示通用结构,由不断发展的操作员$ \ Mathcal {O}(\ Mathbf {x},t)$确定。相关的轨迹涉及运算符在初始和最后的时间均与某个点收缩,因此结构上与主导户外相关器的轨迹在结构上有所不同。在没有保护法律的情况下,相关性衰减指数:$ \ langle \ Mathcal {o}(\ Mathbf {X},T),T)\ Mathcal {O}(0,0,0)\ rangle \ sim \ sim \ exp(-s_ \ s_ \ s_ \ syrm {eq eq} $ \ Mathbf {V} = \ Mathbf {X}/ T $定义了空间射线,而$ r(\ Mathbf {V})$是关联的衰减率。我们在各种时空结构的成本功能方面表达$ r(\ mathbf {v})$。在1+1D中,操作员历史记录可以在关键的射线速度$ v_c $上显示相变,其中$ r(\ mathbf {v})$是未分析的。在低$ V $时,主要的Feynman历史是“脂肪”:操作员在再次签约之前的订单$ t^α\ gg 1 $的大小。在高$ v $的情况下,轨迹是“薄”:操作员始终保留订单一号。在HAAR随机统一电路中,此过渡映射到一对随机步行(操作员的两个空间边界)的简单结合过渡。在较高的维度中,薄轨迹总是占主导地位。我们讨论了从时间订购的相关器而不是OTOC中提取蝴蝶速度$ v_b $的方法。随机电路中的相关器可以使用有效的ISING型模型进行计算:HAAR砖瓦电路的Ising权重的特殊功能可提供$ v_c = v_b $。这项工作涉及晶格模型,但也提出了量子场理论中实时Feynman图的形态相变的可能性。

We study real-time local correlators $\langle\mathcal{O}(\mathbf{x},t)\mathcal{O}(0,0)\rangle$ in chaotic quantum many-body systems. These correlators show universal structure at late times, determined by the dominant operator-space Feynman trajectories for the evolving operator $\mathcal{O}(\mathbf{x},t)$. The relevant trajectories involve the operator contracting to a point at both the initial and final time and so are structurally different from those dominating the out-of-time-order correlator. In the absence of conservation laws, correlations decay exponentially: $\langle\mathcal{O}(\mathbf{x},t)\mathcal{O}(0,0)\rangle\sim\exp(-s_\mathrm{eq} r(\mathbf{v}) t)$, where $\mathbf{v}= \mathbf{x}/ t$ defines a spacetime ray, and $r(\mathbf{v})$ is an associated decay rate. We express $r(\mathbf{v})$ in terms of cost functions for various spacetime structures. In 1+1D, operator histories can show a phase transition at a critical ray velocity $v_c$, where $r(\mathbf{v})$ is nonanalytic. At low $v$, the dominant Feynman histories are "fat": the operator grows to a size of order $t^α\gg 1$ before contracting to a point again. At high $v$ the trajectories are "thin": the operator always remains of order-one size. In a Haar-random unitary circuit, this transition maps to a simple binding transition for a pair of random walks (the two spatial boundaries of the operator). In higher dimensions, thin trajectories always dominate. We discuss ways to extract the butterfly velocity $v_B$ from the time-ordered correlator, rather than the OTOC. Correlators in the random circuit may alternatively be computed with an effective Ising-like model: a special feature of the Ising weights for the Haar brickwork circuit gives $v_c=v_B$. This work addresses lattice models, but also suggests the possibility of morphological phase transitions for real-time Feynman diagrams in quantum field theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源