论文标题
通过随机控制屏障功能对数据驱动的安全关键控制学习
Data-Driven Learning of Safety-Critical Control with Stochastic Control Barrier Functions
论文作者
论文摘要
控制屏障功能被广泛用于合成安全关键控制。高斯型噪声的存在可能会导致不安全的作用,并导致严重的后果。尽管在随机系统的安全至关重要控制中进行了广泛的研究,但在许多现实世界中,我们对动力学的随机组件没有了解。在本文中,我们研究了具有未知扩散部分的随机系统的安全性控制,并提出了一种数据驱动的方法来处理这些情况。更具体地说,我们提出了一个数据驱动的随机控制屏障函数(DDSCBF)框架,并使用监督的学习通过DDSCBF方案学习未知的随机动力学。在某些合理的假设下,我们保证使用通用近似定理在部分未知的动力学下近似于随机控制屏障函数(SCBF)的ITô派生。我们还表明,我们可以使用DDSCBF方案与先前工作中的SCBF实现相同的安全保证,而无需了解随机动力学。我们使用两个非线性随机系统在模拟中验证我们的理论。
Control barrier functions are widely used to synthesize safety-critical controls. The existence of Gaussian-type noise may lead to unsafe actions and result in severe consequences. While studies are widely done in safety-critical control for stochastic systems, in many real-world applications, we do not have the knowledge of the stochastic component of the dynamics. In this paper, we study safety-critical control of stochastic systems with an unknown diffusion part and propose a data-driven method to handle these scenarios. More specifically, we propose a data-driven stochastic control barrier function (DDSCBF) framework and use supervised learning to learn the unknown stochastic dynamics via the DDSCBF scheme. Under some reasonable assumptions, we provide guarantees that the DDSCBF scheme can approximate the Itô derivative of the stochastic control barrier function (SCBF) under partially unknown dynamics using the universal approximation theorem. We also show that we can achieve the same safety guarantee using the DDSCBF scheme as with SCBF in previous work without requiring the knowledge of stochastic dynamics. We use two non-linear stochastic systems to validate our theory in simulations.