论文标题

使用随机有限元方法的跨模式稳定随机浅水系统

Cross-mode Stabilized Stochastic Shallow Water Systems Using Stochastic Finite Element Methods

论文作者

Chen, Chen, Dawson, Clint, Valseth, Eirik

论文摘要

在研究水文系统中研究不确定性的替代模型的开发需要在制定采样策略和远期模型模拟方面进行大量努力。此外,在预测时间至关重要的应用中,例如飓风风暴潮的预测,在短时间内可能需要对系统响应和不确定性的预测。在这里,我们开发了一个有效的随机浅水模型来解决这些问题。为了离散物理和概率空间,我们使用随机盖金方法和增量压力校正方案来推进解决方案。为了克服离散的稳定性问题,我们提出了交叉模式稳定方法,该方法通过以模式耦合方式向每个随机模式添加稳定项,在概率空间中采用了现有的稳定方法。我们广泛验证了理想化的浅水测试案例和过去飓风的后果的开发方法。随后,我们使用开发和验证的方法对已建立的浅水替代模型进行全面的统计分析。最后,我们在不确定的风力阻力系数下提出了飓风风暴潮的预测因子,并证明了其对飓风Ike和Harvey的有效性。

The development of surrogate models to study uncertainties in hydrologic systems requires significant effort in the development of sampling strategies and forward model simulations. Furthermore, in applications where prediction time is critical, such as prediction of hurricane storm surge, the predictions of system response and uncertainties can be required within short time frames. Here, we develop an efficient stochastic shallow water model to address these issues. To discretize the physical and probability spaces we use a Stochastic Galerkin method and a Incremental Pressure Correction scheme to advance the solution in time. To overcome discrete stability issues, we propose cross-mode stabilization methods which employs existing stabilization methods in the probability space by adding stabilization terms to every stochastic mode in a modes-coupled way. We extensively verify the developed method for both idealized shallow water test cases and hindcasting of past hurricanes. We subsequently use the developed and verified method to perform a comprehensive statistical analysis of the established shallow water surrogate models. Finally, we propose a predictor for hurricane storm surge under uncertain wind drag coefficients and demonstrate its effectivity for Hurricanes Ike and Harvey.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源