论文标题

TREC的Pash 2021深度学习曲目:多阶段排名的生成增强模型

PASH at TREC 2021 Deep Learning Track: Generative Enhanced Model for Multi-stage Ranking

论文作者

Qiao, Yixuan, Chen, Hao, Wang, Jun, Liu, Tuozhen, Ye, Xianbin, Tang, Xin, Fang, Rui, Gao, Peng, Xie, Wenfeng, Xie, Guotong

论文摘要

本文描述了Pash参与TREC 2021深度学习曲目。在召回阶段,我们采用了一种结合稀疏和密集检索方法的方案。在多阶段排名阶段中,基于对通用知识和文档级数据的持续预先训练的模型,使用了点和成对排名策略。与TREC 2020深度学习轨道相比,我们还引入了生成模型T5,以进一步提高性能。

This paper describes the PASH participation in TREC 2021 Deep Learning Track. In the recall stage, we adopt a scheme combining sparse and dense retrieval method. In the multi-stage ranking phase, point-wise and pair-wise ranking strategies are used one after another based on model continual pre-trained on general knowledge and document-level data. Compared to TREC 2020 Deep Learning Track, we have additionally introduced the generative model T5 to further enhance the performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源