论文标题
使用静态检测器调制的单扫描双能锥束CT:幻影研究
Single Scan Dual-energy Cone-beam CT Using Static Detector Modulation: A Phantom Study
论文作者
论文摘要
锥束CT(CBCT)安装在治疗室中,以促进在线临床应用,包括放射线和手术的图像指导。半粉红色和短罐是临床应用中通常使用的模式,以扩大成像量并减少辐射暴露。解剖结构是使用CBCT忠实地重建的,而包括材料组成在内的深度信息在当前形式不可行。双能计算机断层扫描(DECT)是一种先进的医学成像技术,通过使用两个不同的能量光谱扫描患者,具有出色的材料分化能力。传统的DECT系统需要昂贵且复杂的硬件组件,从而将DECT应用程序显着限制为Con Beam CT(CBCT)机器。在这项工作中,我们通过将专门设计的光束调制器放置在检测器表面前面,以在单个扫描中获取双能投影数据,从而提出了双能锥CT(DECBCT)系统。引入了一个基于深度学习的数据恢复模型,以从检测器调节数据中生成完整的双能量数据,以进行DECT图像重建和材料分解。使用电子密度幻影和临床CT评估所提出的方法的性能。在电子幻影研究中,电子密度计算的平均误差低于1.16%。重建线性衰减系数(LAC)的平均误差分别低于头部和骨盆研究的1.41%和0.89%。结果表明,该方法是临床实践中单扫描DECBCT的有前途的解决方案。
Cone-beam CT (CBCT) is installed in the treatment room to facilitate online clinical applications, including image guidance in radiation and surgery. Half-fan and short-can are the commonly used modes in clinical applications to expand the imaging volume and reduce radiation exposure. Anatomical structures are faithfully reconstructed using CBCT while deep information including material composition is not feasible in its current form. Dual-energy computed tomography (DECT) is an advanced medical imaging technology with superior capability of material differentiation by scanning the patient using two different energy spectra. Conventional DECT systems require expensive and sophisticated hardware components, significantly limiting DECT applications to cone-beam CT (CBCT) machines. In this work, we propose a dual-energy cone-beam CT (DECBCT) system by placing a dedicatedly designed beam modulator in front of the detector surface to acquire dual-energy projection data in a single scan. A deep learning-based data restoration model is introduced to generate complete dual-energy data from the detector-modulated data for DECT image reconstruction and material decomposition. The performance of the proposed method is evaluated using an electron density phantom and clinical CT. The mean error for electron density calculation is lower than 1.16% in the electron density phantom study. The mean errors for reconstructed linear attenuation coefficient (LAC) are lower than 1.41% and 0.89% in the head and pelvis studies, respectively. The results indicate that the proposed method is a promising solution for single-scan DECBCT in clinical practice.