论文标题

复杂双曲线轨道的无穷大的三个manifolds

Three-manifolds at infinity of complex hyperbolic orbifolds

论文作者

Ma, Jiming, Xie, Baohua

论文摘要

我们显示了复杂双曲三角组的无限属性$δ_{3,4,4; \ fty} $和$δ_{3,4,6; \ fty} $,是单cused夸张的3- manifolds $ M038 $和$ s090 $在Snepappy Census中,分​​别是这些两种典范。 此外,上面的这两个双曲线3个manifolds可以通过Dehn手术在Snappy Census中分别带有斜坡$ 2 $和$ 4 $的两张双曲线3个manifold $ M295 $的第一端。通常,本文的主要结果使我们能够猜测,复杂双曲三角组的无穷大歧视$δ_{3,4,n; \ iftty} $是Dehn手术在首次使用$ M295 $ M295 $ n-2 $ $ n-2 $的$ M295 $ $ N-2 $上获得的单cused双曲线3个manifold。

We show the manifolds at infinity of the complex hyperbolic triangle groups $Δ_{3,4,4;\infty}$ and $Δ_{3,4,6;\infty}$,are one-cusped hyperbolic 3-manifolds $m038$ and $s090$ in the Snappy Census respectively.That is,these two manifolds admit spherical CR uniformizations. Moreover, these two hyperbolic 3-manifolds above can be obtained by Dehn surgeries on the first cusp of the two-cusped hyperbolic 3-manifold $m295$ in the Snappy Census with slopes $2$ and $4$ respectively. In general,the main result in this paper allow us to conjecture that the manifold at infinity of the complex hyperbolic triangle group $Δ_{3,4,n;\infty}$ is the one-cusped hyperbolic 3-manifold obtained by Dehn surgery on the first cusp of $m295$ with slope $n-2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源