论文标题

用于部门压缩MMWave通道估计的结构化感应矩阵设计

Structured Sensing Matrix Design for In-sector Compressed mmWave Channel Estimation

论文作者

Masoumi, Hamed, Myers, Nitin Jonathan, Leus, Geert, Wahls, Sander, Verhaegen, Michel

论文摘要

由于使用宽光束,基于压缩感应(CS)的快速毫米波(MMWAVE)通道估计技术在通道测量中遭受低信噪比(SNR)的影响。为了解决这个问题,我们开发了一种基于CS的内部MMWave通道估计技术,该技术将能量集中在角域中的扇区上。具体而言,我们构建了一类新的结构化CS矩阵,以估计感兴趣领域内的通道。为此,我们首先确定测量数量等于扇区维度时,然后在子nyquist示例中使用其子采样版本时,请首先确定最佳采样模式。与基准算法相比,我们的方法在感兴趣的领域和更好的渠道估计中导致低叠加伪像。

Fast millimeter wave (mmWave) channel estimation techniques based on compressed sensing (CS) suffer from low signal-to-noise ratio (SNR) in the channel measurements, due to the use of wide beams. To address this problem, we develop an in-sector CS-based mmWave channel estimation technique that focuses energy on a sector in the angle domain. Specifically, we construct a new class of structured CS matrices to estimate the channel within the sector of interest. To this end, we first determine an optimal sampling pattern when the number of measurements is equal to the sector dimension and then use its subsampled version in the sub-Nyquist regime. Our approach results in low aliasing artifacts in the sector of interest and better channel estimates than benchmark algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源