论文标题

跨语性的终身学习

Cross-lingual Lifelong Learning

论文作者

M'hamdi, Meryem, Ren, Xiang, May, Jonathan

论文摘要

多语言学习的长期目标是开发一种通用的跨语性模型,该模型可以承受多种语言数据分布的变化。已经有大量工作来适应这种多语言模型来看不见目标语言。但是,大多数朝这个方向的工作都集中在标准的单跳传输学习管道从源到目标语言中,而在现实情况下,可以随时以连续的方式合并新语言。在本文中,我们提出了一种原则上的跨语性持续学习(CCL)评估范式,在其中我们分析了用于不断适应不同语言的新兴数据的不同类别的方法。我们提供有关使多语言顺序学习特别具有挑战性的见解。为了克服此类挑战,我们与精心策划的数据流相比,与基线相比,我们对一组代表性的跨语义持续学习算法进行了分析,并分析其知识保存,积累和概括能力。该分析的含义包括如何衡量和平衡不同跨语性持续学习的探针,这超出了传统的转移学习。

The longstanding goal of multi-lingual learning has been to develop a universal cross-lingual model that can withstand the changes in multi-lingual data distributions. There has been a large amount of work to adapt such multi-lingual models to unseen target languages. However, the majority of work in this direction focuses on the standard one-hop transfer learning pipeline from source to target languages, whereas in realistic scenarios, new languages can be incorporated at any time in a sequential manner. In this paper, we present a principled Cross-lingual Continual Learning (CCL) evaluation paradigm, where we analyze different categories of approaches used to continually adapt to emerging data from different languages. We provide insights into what makes multilingual sequential learning particularly challenging. To surmount such challenges, we benchmark a representative set of cross-lingual continual learning algorithms and analyze their knowledge preservation, accumulation, and generalization capabilities compared to baselines on carefully curated datastreams. The implications of this analysis include a recipe for how to measure and balance different cross-lingual continual learning desiderata, which go beyond conventional transfer learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源