论文标题
固定点堆栈的代数和平滑度
Algebraicity and smoothness of fixed point stacks
论文作者
论文摘要
我们研究具有有限组成序列的平面方案的固定点堆栈的代数和平滑度,其因子是还原性或适当,平坦,有限的,作用于具有仿射的代数堆栈,有限地呈现为粘合剂。为此,我们将[SGA3.2]的一些定理扩展到同构HOM(G,H)的函子和还原亚组的函数和仿射的还原亚组次(H)的函子。
We study algebraicity and smoothness of fixed point stacks for flat group schemes which have a finite composition series whose factors are either reductive or proper, flat, finitely presented, acting on algebraic stacks with affine, finitely presented diagonal. For this, we extend some theorems of [SGA3.2] on functors of homomorphisms Hom(G, H) and functors of reductive subgroups Sub(H) for an affine, possibly non-flat group scheme H.