论文标题
在MIMO体系结构中进行有效的功能共享
Towards efficient feature sharing in MIMO architectures
论文作者
论文摘要
多输入的多输出体系结构建议在一个基本网络中训练多个子网络,然后平均从免费的融合中受益的子网络预测。尽管有一些相对成功,但这些架构在使用参数方面仍然浪费。确实,我们在本文中强调说,学到的子网未能共享甚至限制其在较小的移动和AR/VR设备上的通用功能。我们认为这种行为源于多输入多输出框架的不足部分。为了解决这个问题,我们提出了一个新颖的构造步骤,使子网结构可以正确共享特征。 CIFAR-100上的初步实验显示了我们的调整允许特征共享并提高小体系结构的模型性能。
Multi-input multi-output architectures propose to train multiple subnetworks within one base network and then average the subnetwork predictions to benefit from ensembling for free. Despite some relative success, these architectures are wasteful in their use of parameters. Indeed, we highlight in this paper that the learned subnetwork fail to share even generic features which limits their applicability on smaller mobile and AR/VR devices. We posit this behavior stems from an ill-posed part of the multi-input multi-output framework. To solve this issue, we propose a novel unmixing step in MIMO architectures that allows subnetworks to properly share features. Preliminary experiments on CIFAR-100 show our adjustments allow feature sharing and improve model performance for small architectures.