论文标题
使用常规血值和Lognnet神经网络对199疾病的诊断和预后
Diagnosis and Prognosis of COVID-19 Disease Using Routine Blood Values and LogNNet Neural Network
论文作者
论文摘要
自2020年2月以来,世界一直在与Covid-19疾病进行激烈的斗争,随着疾病变成大流行,卫生系统受到悲惨的压力。这项研究的目的是使用lognnet储量神经网络的向后特征消除算法获得Covid-19诊断和预后中最有效的常规血值(RBV)。该研究中的第一个数据集由5296例患者组成,具有相同数量的阴性和阳性Covid-19测试。 Lognnet模型在疾病诊断中的准确率达到了99.5%,其特征的精度为99.17%,仅平均红细胞血红蛋白浓度,平均性肌张力性血红蛋白和激活的部分凝血酶蛋白时间。第二个数据集由总共3899例COVID-19诊断为医院治疗的患者,其中203名患者是严重的患者,3696例患者是温和的患者。该模型在确定疾病预后的48个特征和82.7%的准确率达到了94.4%,仅红细胞沉积率,中性粒细胞计数和C反应性蛋白质特征,精度为82.7%。我们的方法将减少卫生部门的负压力,并帮助医生使用关键特征来了解Covid-19的发病机理。该方法有望在物联网中创建移动健康监测系统。
Since February 2020, the world has been engaged in an intense struggle with the COVID-19 dis-ease, and health systems have come under tragic pressure as the disease turned into a pandemic. The aim of this study is to obtain the most effective routine blood values (RBV) in the diagnosis and prognosis of COVID-19 using a backward feature elimination algorithm for the LogNNet reservoir neural network. The first dataset in the study consists of a total of 5296 patients with the same number of negative and positive COVID-19 tests. The LogNNet-model achieved the accuracy rate of 99.5% in the diagnosis of the disease with 46 features and the accuracy of 99.17% with only mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, and activated partial prothrombin time. The second dataset consists of a total of 3899 patients with a diagnosis of COVID-19 who were treated in hospital, of which 203 were severe patients and 3696 were mild patients. The model reached the accuracy rate of 94.4% in determining the prognosis of the disease with 48 features and the accuracy of 82.7% with only erythrocyte sedimentation rate, neutrophil count, and C reactive protein features. Our method will reduce the negative pressures on the health sector and help doctors to understand the pathogenesis of COVID-19 using the key features. The method is promising to create mobile health monitoring systems in the Internet of Things.