论文标题

与时间分位数调整的保形预测

Conformal Prediction with Temporal Quantile Adjustments

论文作者

Lin, Zhen, Trivedi, Shubhendu, Sun, Jimeng

论文摘要

我们开发时间分位数调整(TQA),这是一种构建有效且有效的预测间隔(PI)的一般方法,用于横截面时间序列数据回归。这种数据在包括计量经济学和医疗保健在内的许多领域中很常见。医疗保健中的一个规范示例是使用生理时间序列数据预测患者的结局,其中一组患者组成了横截面。此设置中的可靠PI估计器必须解决两个不同的覆盖范围:横截面切片的横截面覆盖范围,以及每个时间序列的时间维度沿时间维度的纵向覆盖范围。最近的工作探索了适应保形预测(CP)以在时间序列上下文中获得PI。但是,没有一个同时处理覆盖范围的概念。 CP方法通常会从校准集中的不合格得分的分布中查询预先指定的分位数。 TQA每次$ t $都会调整CP查询的分位数,以理论上的方式计算横截面和纵向覆盖范围。 TQA的事后性质有助于其用作任何时间序列回归模型的普通包装。我们通过广泛的实验来验证TQA的性能:TQA通常获得有效的PI并改善纵向覆盖范围,同时保留横截面覆盖范围。

We develop Temporal Quantile Adjustment (TQA), a general method to construct efficient and valid prediction intervals (PIs) for regression on cross-sectional time series data. Such data is common in many domains, including econometrics and healthcare. A canonical example in healthcare is predicting patient outcomes using physiological time-series data, where a population of patients composes a cross-section. Reliable PI estimators in this setting must address two distinct notions of coverage: cross-sectional coverage across a cross-sectional slice, and longitudinal coverage along the temporal dimension for each time series. Recent works have explored adapting Conformal Prediction (CP) to obtain PIs in the time series context. However, none handles both notions of coverage simultaneously. CP methods typically query a pre-specified quantile from the distribution of nonconformity scores on a calibration set. TQA adjusts the quantile to query in CP at each time $t$, accounting for both cross-sectional and longitudinal coverage in a theoretically-grounded manner. The post-hoc nature of TQA facilitates its use as a general wrapper around any time series regression model. We validate TQA's performance through extensive experimentation: TQA generally obtains efficient PIs and improves longitudinal coverage while preserving cross-sectional coverage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源