论文标题

缩小Schauder框架及其相关基础

Shrinking Schauder Frames and their Associated Bases

论文作者

Beanland, Kevin, Freeman, Daniel

论文摘要

对于带有缩小的Schauder框架$(x_i,f_i)$的Banach Space $ x $,我们提供了一种明确的方法来构建相关的基础。在最小相关的基础上没有收缩的情况下,我们证明$(x_i,f_i)$的每个缩水相关基础都占据了无与伦比的无与伦比的无与伦比的缩水相关基础$(x_i,f_i)$。通过调整Pełczy{可能滑雪的结构,我们将Schauder框架缩小的空间描述为具有$ W^*$ - 有限的近似属性的空间。

For a Banach space $X$ with a shrinking Schauder frame $(x_i,f_i)$ we provide an explicit method for constructing a shrinking associated basis. In the case that the minimal associated basis is not shrinking, we prove that every shrinking associated basis of $(x_i,f_i)$ dominates an uncountable family of incomparable shrinking associated bases of $(x_i,f_i)$. By adapting a construction of Pełczy{ń}ski, we characterize spaces with shrinking Schauder frames as spaces having the $w^*$-bounded approximation property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源