论文标题
共同的包络二元相互作用模拟在热脉动的AGB星和低质量伴侣之间
Common envelope binary interaction simulations between a thermally-pulsating AGB star and a low mass companion
论文作者
论文摘要
所有行星星云中至少有五分之一是共同的包膜(CE)相互作用的产物,其中伴随的螺旋体进入渐近巨型分支(AGB)星的包膜,弹出星云并留下紧凑的二元二元。在这项工作中,我们对1.7 $ m _ {\ odot} $ agb星和0.6 $ m _ {\ odot} $ companion进行3D平滑的粒子流体动力学模拟。我们使用在第七热脉冲上采用的一维恒星模型对AGB结构进行建模。当巨人处于第七热脉冲的扩展阶段,半径为250 $ r _ {\ odot} $时,进行交互。 CE后轨道分离在20至31 $ r _ {\ odot} $之间变化,包括重组能量,导致更宽的分离。根据观察到的短时间尺度,我们建议热脉冲可以触发CES,扩大AGB恒星将伴侣捕获到CES中的能力,这将导致预测较大的AGB后AGB群体,后CE后二元组。模拟包括状态的列表方程式,请触发更多的气体,可能会在短时间尺度上解脱整个信封。与红色巨型分支恒星相比,在刺激性的AGB方面,CE的形状更为球形,如果包括重组能量,则更是如此。我们预计由这一CE形成的星云与Zou等人预测的星云具有不同的特征。 2020。
At least one in five of all planetary nebulae are the product of a common envelope (CE) interaction, where the companion in-spirals into the envelope of an asymptotic giant branch (AGB) star ejecting the nebula and leaving behind a compact binary. In this work we carry out 3D smoothed particle hydrodynamics simulations of the CE interaction between a 1.7 $M_{\odot}$ AGB star and a 0.6 $M_{\odot}$ companion. We model the AGB structure using a 1D stellar model taken at the seventh thermal pulse. The interaction takes place when the giant is on the expanding phase of the seventh thermal pulse and has a radius of 250 $R_{\odot}$. The post-CE orbital separations varies between 20 and 31 $R_{\odot}$, with the inclusion of recombination energy resulting in wider separations. Based on the observed short in-spiral time-scales, we suggest that thermal pulses can trigger CEs, extending the ability of AGB stars to capture companions into CEs, that would lead to the prediction of a larger population of post-AGB, post-CE binaries. Simulations that include a tabulated equation of state unbind a great deal more gas, likely unbinding the entire envelope on short time-scales. The shape of the CE after the in-spiral is more spherical for AGB than red giant branch stars, and even more so if recombination energy is included. We expect that the planetary nebula formed from this CE will have different features from those predicted by Zou et al. 2020.