论文标题

高度与树连接的互补模量因子有界度

Highly tree-connected complementary modulo factors with bounded degrees

论文作者

Hasanvand, Morteza

论文摘要

令$ g $为带有两部分$(x,y)$的两部分图,让$ k $为一个正整数,让$ f:v(g)\ rightarrow z_k $是用$ \ sum_ {v \ in x} f(in x} f(v)f(v)f(v)\ stackrel \ stackrel {k} {在本文中,我们表明,如果$ g $是$(200万+2M_0+4K-4)$ - 边缘连接和$ m+m_0> 0 $,则$ g $具有$ $ m $ -tree连接的因子$ h $ $ d_h(v)\ stackrel {k} {\ equiv} f(v)$和$$ \ lfloor \ frac {d_g(v)} {2} {2} \ rfloor-(k-rfloor-(k-1)-m_0 \ lceil \ frac {d_g(v)} {2} \ rceil+k-1+m。$$接下来,我们将此结果推广到一般图表,并为具有高度边缘连接的一般图形$ g $得出足够的程度条件,以使每个顶点$ v $ v $ v $ v $ d_h(v)\ n $ h $ \ {f(v),f(v)+k \} $。最后,我们表明,每$(4K-2)$ - 连接的图形都承认了一个双方连接的因子,该因子的学位可除以$ k $。

Let $G$ be a bipartite graph with bipartition $(X,Y)$, let $k$ be a positive integer, and let $f:V(G)\rightarrow Z_k$ be a mapping with $\sum_{v\in X}f(v) \stackrel{k}{\equiv}\sum_{v\in Y}f(v)$. In this paper, we show that if $G$ is $(2m+2m_0+4k-4)$-edge-connected and $m+m_0>0$, then $G$ has an $m$-tree-connected factor $H$ such that its complement is $m_0$-tree-connected and for each vertex $v$, $d_H(v)\stackrel{k}{\equiv} f(v)$, and $$\lfloor\frac{d_G(v)}{2}\rfloor-(k-1)-m_0\le d_{H}(v)\le \lceil\frac{d_G(v)}{2}\rceil+k-1+m.$$ Next, we generalize this result to general graphs and derive a sufficient degree condition for a highly edge-connected general graph $G$ to have a connected factor $H$ such that for each vertex $v$, $d_H(v)\in \{f(v),f(v)+k\}$. Finally, we show that every $(4k-2)$-tree-connected graph admits a bipartite connected factor whose degrees are divisible by $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源