论文标题
在黑洞与宿主星系关系中,高红移大量黑洞种子仍然存在多长时间?
How long do high-redshift massive black hole seeds remain outliers in black hole vs. host galaxy relations?
论文作者
论文摘要
$ 10^9 \ {\ rm m_ \ odot} $在宇宙的前十亿年内的超质量黑洞(SMBHS)的存在仍然是我们对黑洞形成和生长的常规理解的难题。这些SMBHS的几种建议的地层途径导致了沉重的种子,初始黑洞质量为$ 10^4-10^6〜 {\ rm m_ \ odot} $。这可能会导致过度庞大的BH星系(OMBG),其核黑洞的质量与周围的恒星质量相当甚至更大:黑洞与恒星质量比为$ M _ {\ rm BH}/M_* \ gg GG 10^{ - 3} $,在低红色的典型值中过多。我们研究了这些新生BHS在$ M _ {\ rm BH} -M _ {*} $关系中保持异常值的时间,该关系是通过探索先前在\ texttt {renaissance} simulations中\ texttttt {renaissance} simulations中的两个OMBG的后续演变来进行的。我们发现,两个OMBG都有$ m _ {\ rm bh}/m_*> 1 $> 1美元,从$ z \ $ z \ 15 $的出生到与更大的光环合并为$ z \ 8 $。我们发现,OMBG可以从它们更大的巨额中解析$ 10^{11}〜{\ rm m_ \ odot} $,直到其合并以$ z \ 8 $完成为止。通过{\ it JWST}和敏感的X射线望远镜,可以通过检测类似的OMBG并确定其独特的黑色孔与星质量比,从而为将来的观察带来了一个窗口。
The existence of $10^9\ {\rm M_\odot}$ supermassive black holes (SMBHs) within the first billion years of the universe remains a puzzle in our conventional understanding of black hole formation and growth. Several suggested formation pathways for these SMBHs lead to a heavy seed, with an initial black hole mass of $10^4-10^6~{\rm M_\odot}$. This can lead to an overly massive BH galaxy (OMBG), whose nuclear black hole's mass is comparable to or even greater than the surrounding stellar mass: the black hole to stellar mass ratio is $M_{\rm bh}/M_* \gg 10^{-3}$, well in excess of the typical values at lower redshift. We investigate how long these newborn BHs remain outliers in the $M_{\rm bh}-M_{*}$ relation, by exploring the subsequent evolution of two OMBGs previously identified in the \texttt{Renaissance} simulations. We find that both OMBGs have $M_{\rm bh}/M_* > 1$ during their entire life, from their birth at $z\approx 15$ until they merge with much more massive haloes at $z\approx 8$. We find that the OMBGs are spatially resolvable from their more massive, $10^{11}~{\rm M_\odot}$, neighboring haloes until their mergers are complete at $z\approx 8$. This affords a window for future observations with {\it JWST} and sensitive X-ray telescopes to diagnose the heavy-seed scenario, by detecting similar OMBGs and establishing their uniquely high black hole-to-stellar mass ratio.