论文标题

babynet:胎儿超声视频中出生体重预测的残留变压器模块

BabyNet: Residual Transformer Module for Birth Weight Prediction on Fetal Ultrasound Video

论文作者

Płotka, Szymon, Grzeszczyk, Michal K., Brawura-Biskupski-Samaha, Robert, Gutaj, Paweł, Lipa, Michał, Trzciński, Tomasz, Sitek, Arkadiusz

论文摘要

预测出生时的胎儿体重是围产期护理的重要方面,尤其是在产前管理的背景下,其中包括计划的时机和分娩方式。使用产前超声的准确预测重量是具有挑战性的,因为它需要在妊娠期期间特定的胎儿身体部位的图像,由于缺乏羊水引起的图像质量较差,因此很难捕获体重的图像。结果,依赖标准方法的预测通常会遭受重大错误。在本文中,我们提出了残差变压器模块,该模块扩展了一个基于3D重新连接的网络,用于分析2D+T时空超声视频扫描。我们的端到端方法称为BabyNet,会自动预测基于胎儿超声视频扫描的胎儿出生体重。我们使用专用的临床组来评估BabyNet,其中包括225胎2D胎儿超声视频的怀孕视频,来自75例在分娩前一天进行的患者。实验结果表明,婴儿网络的表现优于几种最先进的方法,并以与人类专家相当的准确性来估算出生时的体重。此外,将人类专家提供的估计值与由babynet计算的估计值相结合,可以取得最佳的结果,从而优于其他任何方法,都显着。 BabyNet的源代码可从https://github.com/sanoscience/babynet获得。

Predicting fetal weight at birth is an important aspect of perinatal care, particularly in the context of antenatal management, which includes the planned timing and the mode of delivery. Accurate prediction of weight using prenatal ultrasound is challenging as it requires images of specific fetal body parts during advanced pregnancy which is difficult to capture due to poor quality of images caused by the lack of amniotic fluid. As a consequence, predictions which rely on standard methods often suffer from significant errors. In this paper we propose the Residual Transformer Module which extends a 3D ResNet-based network for analysis of 2D+t spatio-temporal ultrasound video scans. Our end-to-end method, called BabyNet, automatically predicts fetal birth weight based on fetal ultrasound video scans. We evaluate BabyNet using a dedicated clinical set comprising 225 2D fetal ultrasound videos of pregnancies from 75 patients performed one day prior to delivery. Experimental results show that BabyNet outperforms several state-of-the-art methods and estimates the weight at birth with accuracy comparable to human experts. Furthermore, combining estimates provided by human experts with those computed by BabyNet yields the best results, outperforming either of other methods by a significant margin. The source code of BabyNet is available at https://github.com/SanoScience/BabyNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源