论文标题

贝叶斯卷积神经网络有限的数据高光谱遥感图像分类

Bayesian Convolutional Neural Networks for Limited Data Hyperspectral Remote Sensing Image Classification

论文作者

Joshaghani, Mohammad, Davari, Amirabbas, Hatamian, Faezeh Nejati, Maier, Andreas, Riess, Christian

论文摘要

使用深度神经网络进行高光谱遥感(HSRS)图像分类是一项艰巨的任务。 HSRS图像具有较高的维度和大量通道,在通道之间具有很大的冗余性。此外,与其他分类任务相比,用于对HSRS图像进行分类的培训数据有限,可用培训数据的数量要小得多。这些因素使深层神经网络的训练过程复杂化,并且与常规模型相比,即使它们的表现也不好。此外,卷积神经网络产生过度自信的预测,考虑到上述问题,这是非常不希望的。 在这项工作中,我们将HSRS图像分类用于特殊的深神经网络,即贝叶斯神经网络(BNN)。就我们的知识而言,这是BNN在HSRS图像分类中首次使用。 BNN固有地提供了不确定性的措施。我们在帕维亚中心,萨利纳斯和博茨瓦纳数据集上进行了广泛的实验。我们表明,BNN优于标准的卷积神经网络(CNN)和现成的随机森林(RF)。进一步的实验强调了BNN更稳定和鲁棒,并且对于预期预期误差较高的样品而言,不确定性更高。

Employing deep neural networks for Hyperspectral remote sensing (HSRS) image classification is a challenging task. HSRS images have high dimensionality and a large number of channels with substantial redundancy between channels. In addition, the training data for classifying HSRS images is limited and the amount of available training data is much smaller compared to other classification tasks. These factors complicate the training process of deep neural networks with many parameters and cause them to not perform well even compared to conventional models. Moreover, convolutional neural networks produce over-confident predictions, which is highly undesirable considering the aforementioned problem. In this work, we use for HSRS image classification a special class of deep neural networks, namely a Bayesian neural network (BNN). To the extent of our knowledge, this is the first time that BNNs are used in HSRS image classification. BNNs inherently provide a measure for uncertainty. We perform extensive experiments on the Pavia Centre, Salinas, and Botswana datasets. We show that a BNN outperforms a standard convolutional neural network (CNN) and an off-the-shelf Random Forest (RF). Further experiments underline that the BNN is more stable and robust to model pruning, and that the uncertainty is higher for samples with higher expected prediction error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源