论文标题
通过无损拓扑来预测结构材料的故障特性
Predicting failure characteristics of structural materials via deep learning based on nondestructive void topology
论文作者
论文摘要
对结构材料的故障进程的准确预测对于预防故障引起的事故至关重要。尽管基于机制建模的努力相当大,但由于意外的伤害因素和缺陷的演变,准确的预测仍然是一项具有挑战性的任务。在这里,我们报告了一种用于预测材料故障特征的新方法,该方法将非破坏性X射线计算机断层扫描(X-CT),持续性同源性(pH)和深度多模式学习(DML)结合在一起。合并的方法在材料检查时利用微结构缺陷作为输入,并输出与故障相关的特性。使用两种类型的断裂数据集(拉伸和疲劳数据集),我们的方法证明我们的方法是有效的。该方法在用拉伸数据集预测局部应变时达到了平均绝对误差(MAE),在通过疲劳数据集预测断裂进展方面的MAE为0.14。这些高精度主要是由于X-CT图像的pH处理,该图像将复杂而嘈杂的三维X-CT图像转换为紧凑的二维持久图,这些图可保留关键的拓扑特征,例如内部空隙尺寸,密度和分布。 3D X-CT数据的组合pH和DML处理是我们的独特方法,它基于Void Topology进度在材料检查时实现可靠的失败预测,并且该方法可以扩展到用于实际使用的各种无损坏性故障测试。
Accurate predictions of the failure progression of structural materials is critical for preventing failure-induced accidents. Despite considerable mechanics modeling-based efforts, accurate prediction remains a challenging task in real-world environments due to unexpected damage factors and defect evolutions. Here, we report a novel method for predicting material failure characteristics that uniquely combines nondestructive X-ray computed tomography (X-CT), persistent homology (PH), and deep multimodal learning (DML). The combined method exploits the microstructural defect state at the time of material examination as an input, and outputs the failure-related properties. Our method is demonstrated to be effective using two types of fracture datasets (tensile and fatigue datasets) with ferritic low alloy steel as a representative structural material. The method achieves a mean absolute error (MAE) of 0.09 in predicting the local strain with the tensile dataset and an MAE of 0.14 in predicting the fracture progress with the fatigue dataset. These high accuracies are mainly due to PH processing of the X-CT images, which transforms complex and noisy three-dimensional X-CT images into compact two-dimensional persistence diagrams that preserve key topological features such as the internal void size, density, and distribution. The combined PH and DML processing of 3D X-CT data is our unique approach enabling reliable failure predictions at the time of material examination based on void topology progressions, and the method can be extended to various nondestructive failure tests for practical use.