论文标题
部分吸收培养基中扩散的光谱理论
Spectral theory of diffusion in partially absorbing media
论文作者
论文摘要
最近已经开发了一种基于遭遇的方法来研究部分吸收介质中单粒子扩散的概率框架。后者计算粒子位置$ \ x_t $的关节概率密度(广义传播器)和一个布朗功能$ {\ Mathcal U} _t $,该$ {\ Mathcal U} _T $指定了粒子与反应性零件$ \ call $接触的时间。吸收在$ \ calu_t $越过随机分布的阈值(停止时间)后立即发生。拉普拉斯(Laplace)相对于$ \ calu_t $转换传播器会导致经典的边界值问题(BVP),其中反应性组件具有恒定的吸收$ z $,其中$ z $是相应的laplace变量。因此,基于遭遇的方法的关键步骤是找到逆拉动式变换。在反应性边界$ \ partial \ calm $的情况下,可以通过根据dirichlet到neumann运算符的光谱分解来解决经典的罗宾BVP来实现。在本文中,我们在反应性基板$ \ calm $的情况下开发了类似的结构。特别是,我们表明可以根据一对Dirichlet到Neumann运算符的光谱分解来计算Laplace转换的传播器。但是,将拉普拉斯转换相对于$ z $的变换更加涉及。我们通过考虑一个1D示例来说明理论,其中dirichlet到neumann操作员将其减少到标量。
A probabilistic framework for studying single-particle diffusion in partially absorbing media has recently been developed in terms of an encounter-based approach. The latter computes the joint probability density (generalized propagator) for particle position $\X_t$ and a Brownian functional ${\mathcal U}_t$ that specifies the amount of time the particle is in contact with a reactive component $\calM$. Absorption occurs as soon as $\calU_t$ crosses a randomly distributed threshold (stopping time). Laplace transforming the propagator with respect to $\calU_t$ leads to a classical boundary value problem (BVP) in which the reactive component has a constant rate of absorption $z$, where $z$ is the corresponding Laplace variable. Hence, a crucial step in the encounter-based approach is finding the inverse Laplace transform. In the case of a reactive boundary $\partial \calM$, this can be achieved by solving a classical Robin BVP in terms of the spectral decomposition of a Dirichlet-to-Neumann operator. In this paper we develop the analogous construction in the case of a reactive substrate $\calM$. In particular, we show that the Laplace transformed propagator can be computed in terms of the spectral decomposition of a pair of Dirichlet-to-Neumann operators. However, inverting the Laplace transform with respect to $z$ is more involved. We illustrate the theory by considering a 1D example where the Dirichlet-to-Neumann operators reduce to scalars.