论文标题
单电子纳米芯片自由电子激光器
Single-electron Nano-chip Free-electron Laser
论文作者
论文摘要
常规的自由电子激光器很有用,但大型,由具有许多相对论电子的光束驱动。虽然最近,KeV电子束已被用来从物质芯片上激发宽带辐射,但仍需要寻求芯片大小的自由电子激光器,能够发出相干辐射。不幸的是,那些来自电子显微镜或电介质激光加速器的keV发射器通常会传递一个小电流,而离散的移动电子被分隔几个或几十微米。为了设想将芯片大小的自由电子激光作为强大的研究工具,我们在本文中研究了可以从单个电子中实现的激光辐射,并且在纳米粒晶介电介质波导上的一系列单电子。在我们的研究中,由于电子与带有分布式反馈的结构之间的强耦合,单个50击电子的耦合在31-UM Long Silicon Gragg的Bragg共振上产生了1.5-UM激光样辐射,其厚度为400-Nm厚度和310-NM时期。当由在0.1 PHz处重复的单电子驱动时,纳米颗粒的波导会在激发频率的第二个谐波下发出强激光辐射。理论上还可以预测由波导模式介导的史密斯丝辐射的离散光谱,并通过在光向波导上方的真空空间中观察到。这项研究为需要从紧凑的高亮度电子和光子源获得联合优势的应用打开了机会。
A conventional free-electron laser is useful but large, driven by a beam with many relativistic electrons. Although, recently, keV electron beams have been used to excite broadband radiation from material chips, there remains a quest for a chip-size free-electron laser capable of emitting coherent radiation. Unfortunately, those keV emitters from electron microscopes or dielectric laser accelerator usually deliver a small current with discrete moving electrons separated by a distance of a few or tens of microns. To envisage a chip-size free-electron laser as a powerful research tool, we study in this paper achievable laser radiation from a single electron and an array of single electrons atop a nano-grating dielectric waveguide. In our study, thanks to the strong coupling between the electron and the guided wave in a structure with distributed feedback, a single 50-keV electron generates 1.5-um laser-like radiation at the Bragg resonance of a 31-um long silicon grating with a 400-nm thickness and 310-nm period. When driven by a train of single electrons repeating at 0.1 PHz, the nano-grating waveguide emits a strong laser radiation at the second harmonic of the excitation frequency. A discrete spectrum of Smith-Purcell radiation mediated by the waveguide modes is also predicted in theory and observed from simulation in the vacuum space above the grating waveguide. This study opens up the opportunity for applications requiring combined advantages from compact high-brightness electron and photon sources.