论文标题

$(o,g)$ - 基于重叠和分组功能的颗粒变量精度模糊集

$(O,G)$-granular variable precision fuzzy rough sets based on overlap and grouping functions

论文作者

Li, Wei, Yang, Bin, Qiao, Junsheng

论文摘要

自Bustince等人。引入了重叠和分组功能的概念,这两种类型的聚合功能吸引了人们对理论和应用的引起了很多兴趣。在本文中,$(o,g)$ - 粒状变量精度模糊集($(o,g)$ - gvpfrss的简称)的描述首先是基于重叠和分组功能给出的。同时,为了有效地计算出近似运算符,我们通过模糊的含义和共插入来提供上下近似算子的另一种表达。此外,从施工方法的角度开始,$(o,g)$ -GVPFRSS在不同的模糊关系下代表。最后,在某些其他条件下,关于颗粒变量精度模糊集(简称GVPFRSS)的一些结论将延长至$(O,G)$ -GVPFRSS。

Since Bustince et al. introduced the concepts of overlap and grouping functions, these two types of aggregation functions have attracted a lot of interest in both theory and applications. In this paper, the depiction of $(O,G)$-granular variable precision fuzzy rough sets ($(O,G)$-GVPFRSs for short) is first given based on overlap and grouping functions. Meanwhile, to work out the approximation operators efficiently, we give another expression of upper and lower approximation operators by means of fuzzy implications and co-implications. Furthermore, starting from the perspective of construction methods, $(O,G)$-GVPFRSs are represented under diverse fuzzy relations. Finally, some conclusions on the granular variable precision fuzzy rough sets (GVPFRSs for short) are extended to $(O,G)$-GVPFRSs under some additional conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源