论文标题
使用正则混合模型的端到端多对象检测
End-to-End Multi-Object Detection with a Regularized Mixture Model
论文作者
论文摘要
最近的端到端多对象检测器通过删除手工制作的过程(例如非最大抑制(NMS))来简化推理管道。但是,在培训期间,他们仍然在很大程度上依靠启发式方法和手工制作的过程,从而降低了预测的置信度评分的可靠性。在本文中,我们提出了一个新颖的框架,以训练仅由两个术语组成的端到端多对象检测器:负模样(NLL)和正则化项。在此过程中,多对象检测问题被视为利用正则混合物密度模型的地面真相边界框的密度估计。提出的\ textIt {使用正则化混合模型}(D-RMM)的端到端多对象检测通过用建议的正则化项,最大组件最大化(MCM)损失来培训NLL,以防止重复预测。我们的方法减少了训练过程的启发式方法,并提高了预测的置信度评分的可靠性。此外,我们的D-RMM在MS COCO数据集上胜过以前的端到端检测器。
Recent end-to-end multi-object detectors simplify the inference pipeline by removing hand-crafted processes such as non-maximum suppression (NMS). However, during training, they still heavily rely on heuristics and hand-crafted processes which deteriorate the reliability of the predicted confidence score. In this paper, we propose a novel framework to train an end-to-end multi-object detector consisting of only two terms: negative log-likelihood (NLL) and a regularization term. In doing so, the multi-object detection problem is treated as density estimation of the ground truth bounding boxes utilizing a regularized mixture density model. The proposed \textit{end-to-end multi-object Detection with a Regularized Mixture Model} (D-RMM) is trained by minimizing the NLL with the proposed regularization term, maximum component maximization (MCM) loss, preventing duplicate predictions. Our method reduces the heuristics of the training process and improves the reliability of the predicted confidence score. Moreover, our D-RMM outperforms the previous end-to-end detectors on MS COCO dataset.