论文标题
流媒体宇宙射线在可压缩的,部分离子的等离子体中的湍流扩散
Turbulent diffusion of streaming cosmic rays in compressible, partially ionised plasma
论文作者
论文摘要
宇宙射线(CRS)是星系星座(ISM)的动态重要组成部分。携带大多数CR能量和压力的$ \ sim $ GEV CR可能限制在自我生成的湍流中,导致他们在离子alfvén速度下沿着磁场线流式传输。然而,自我限制对银河系尺度传播的后果仍然高度不确定。 In this paper, we use a large ensemble of magnetohydrodynamical turbulence simulations to quantify how the basic parameters describing ISM turbulence -- the sonic Mach number, $\mathcal{M}$ (plasma compressibility), Alfvén Mach number, $\mathcal{M}_{A0}$ (strength of the large-scale field with respect to the turbulence), and质量分数的电离分数,$χ$ - 影响流CRS的运输。我们表明,CR的大规模运输的小规模运动包括沿田间线的流式传输,被很好地描述为沿平均场和沿(平行)和(垂直于)沿平均场和超扩散的组合。 $ \ Mathcal {m} _ {a0} $在平行和垂直扩散之间驱动各向异性水平,$χ$调制了扩散系数的大小,而在我们选择的单位中,$ \ \ \ \ \ \ \ \ \ \ \ \ \ nmatcal {m} $ n of the sub-alfvvvvevennical(math} a c andc {matectant and cancal {matectannnical {m。 \ Lessim 0.5 $)政权。我们的发现,超级扩散是普遍存在的潜在解释了与在较大的银河尺度上测量的测量来源相比,从接近单个来源的测量值推断出的Cr扩散系数之间的明显差异。最后,我们介绍了扩散系数作为等离子体参数的函数的经验拟合,这些函数可以用作全局星际介质,银河系或宇宙学模拟的子网格配方。
Cosmic rays (CRs) are a dynamically important component of the interstellar medium (ISM) of galaxies. The $\sim$GeV CRs that carry most CR energy and pressure are likely confined by self-generated turbulence, leading them to stream along magnetic field lines at the ion Alfvén speed. However, the consequences of self-confinement for CR propagation on galaxy scales remain highly uncertain. In this paper, we use a large ensemble of magnetohydrodynamical turbulence simulations to quantify how the basic parameters describing ISM turbulence -- the sonic Mach number, $\mathcal{M}$ (plasma compressibility), Alfvén Mach number, $\mathcal{M}_{A0}$ (strength of the large-scale field with respect to the turbulence), and ionisation fraction by mass, $χ$ -- affect the transport of streaming CRs. We show that the large-scale transport of CRs whose small-scale motion consists of streaming along field lines is well described as a combination of streaming along the mean field and superdiffusion both along (parallel to) and across (perpendicular to) it; $\mathcal{M}_{A0}$ drives the level of anisotropy between parallel and perpendicular diffusion and $χ$ modulates the magnitude of the diffusion coefficients, while in our choice of units, $\mathcal{M}$ is unimportant except in the sub-Alfvénic ($\mathcal{M}_{A0} \lesssim 0.5$) regime. Our finding that superdiffusion is ubiquitous potentially explains the apparent discrepancy between CR diffusion coefficients inferred from measurements close to individual sources compared to those measured on larger, Galactic scales. Finally, we present empirical fits for the diffusion coefficients as a function of plasma parameters that may be used as sub-grid recipes for global interstellar medium, galaxy or cosmological simulations.