论文标题
$ d = 8 $的F理论与杂种字符串之间的双重性与两个威尔逊线
The duality between F-theory and the Heterotic String in $D=8$ with two Wilson lines
论文作者
论文摘要
我们通过使用带有两个Wilson线参数的两道螺栓的杂弦的F理论双重构造非几何字符串压缩,以及模块化表单和Picard等级的某些K3表面的方程之间的密切连接$ 16 $。我们为在这个K3表面家族支撑的所有不等值的雅各布椭圆纤维的明确Weierstrass模型构建了明确的Weierstrass模型,并以模块化形式表达其参数,以推广Siegel模块化形式。通过这种方式,我们找到了使用两个Wilson线参数的杂弦弦乐规代代数获得的所有双重几何压实的完整列表。
We construct non-geometric string compactifications by using the F-theory dual of the heterotic string compactified on a two-torus with two Wilson line parameters, together with a close connection between modular forms and the equations for certain K3 surfaces of Picard rank $16$. We construct explicit Weierstrass models for all inequivalent Jacobian elliptic fibrations supported on this family of K3 surfaces and express their parameters in terms of modular forms generalizing Siegel modular forms. In this way, we find a complete list of all dual non-geometric compactifications obtained by the partial higgsing of the heterotic string gauge algebra using two Wilson line parameters.