论文标题
使用多任务神经网络对康普顿望远镜进行事件重建
Event reconstruction of Compton telescopes using a multi-task neural network
论文作者
论文摘要
我们已经开发了一种神经网络模型来执行康普顿望远镜的事件重建。该模型重建了由检测器中的三个或多个相互作用组成的事件。康普顿望远镜要确定伽马射线相互作用的时间顺序以及入射光子是否将所有能量沉积在检测器中还是从检测器逃脱。我们的模型同时使用多任务神经网络预测这两个基本因素,并具有三个完全连接的节点的隐藏层。为了进行验证,我们已经使用蒙特卡洛模拟进行了数值实验,假设使用液体氩的大面积康普顿望远镜以高达$ 3.0 \,\ mathrm {mev} $测量伽马射线。重建模型显示了多个散射事件的事件重建的出色性能,最多包括八次命中。命中订单预测的准确性约为$ 60 \%$,而逃生旗的准确性则高于$ 70 \%$ $ $ $ $ $ $ $ 4-hit $4π$ sosotropic Photons。与其他两种算法,一种经典模型和基于物理的概率相比,当前的神经网络方法在估计准确性中显示出高性能,尤其是当散射数量较小时,3或4。由于模拟数据可以轻松地优化网络模型,因此该模型可以灵活地应用于多种康普顿望远镜。
We have developed a neural network model to perform event reconstruction of Compton telescopes. This model reconstructs events that consist of three or more interactions in a detector. It is essential for Compton telescopes to determine the time order of the gamma-ray interactions and whether the incident photon deposits all energy in a detector or it escapes from the detector. Our model simultaneously predicts these two essential factors using a multi-task neural network with three hidden layers of fully connected nodes. For verification, we have conducted numerical experiments using Monte Carlo simulation, assuming a large-area Compton telescope using liquid argon to measure gamma rays with energies up to $3.0\,\mathrm{MeV}$. The reconstruction model shows excellent performance of event reconstruction for multiple scattering events that consist of up to eight hits. The accuracies of hit order prediction are around $60\%$ while those of escape flags are higher than $70\%$ for up to eight-hit events of $4π$ isotropic photons. Compared with two other algorithms, a classical model and a physics-based probabilistic one, the present neural network method shows high performance in estimation accuracy particularly when the number of scattering is small, 3 or 4. Since simulation data easily optimize the network model, the model can be flexibly applied to a wide variety of Compton telescopes.