论文标题
Toch:运动改进的时空对象对应对应
TOCH: Spatio-Temporal Object-to-Hand Correspondence for Motion Refinement
论文作者
论文摘要
我们提出了TOCH,这是一种使用数据先验来完善不正确的3D手对象交互序列的方法。现有的手动跟踪器,尤其是那些依靠很少的摄像机的手动跟踪器,通常会通过手动相交或缺失的触点产生视觉上不切实际的结果。尽管纠正此类错误需要有关互动时间方面的推理,但大多数以前的作品都集中在静态抓取和触点上。我们方法的核心是Toch Fields,这是一种新颖的时空表示,用于在相互作用过程中建模手与物体之间的对应关系。 Toch字段是一个以对象为中心的表示,它相对于对象编码手的位置。利用这一新颖的表示,我们学习了具有时间降级自动编码器的合理象征领域的潜在多种流形。实验表明,Toch的表现优于最先进的3D手动相互作用模型,这些模型仅限于静态抓取和触点。更重要的是,我们的方法甚至在接触前后都会产生平稳的相互作用。使用单个训练有素的托管模型,我们定量且定性地证明了其从现成的RGB/RGB/RGB-D手动重建方法中纠正错误序列的有用性,并跨对象传输grasps。
We present TOCH, a method for refining incorrect 3D hand-object interaction sequences using a data prior. Existing hand trackers, especially those that rely on very few cameras, often produce visually unrealistic results with hand-object intersection or missing contacts. Although correcting such errors requires reasoning about temporal aspects of interaction, most previous works focus on static grasps and contacts. The core of our method are TOCH fields, a novel spatio-temporal representation for modeling correspondences between hands and objects during interaction. TOCH fields are a point-wise, object-centric representation, which encode the hand position relative to the object. Leveraging this novel representation, we learn a latent manifold of plausible TOCH fields with a temporal denoising auto-encoder. Experiments demonstrate that TOCH outperforms state-of-the-art 3D hand-object interaction models, which are limited to static grasps and contacts. More importantly, our method produces smooth interactions even before and after contact. Using a single trained TOCH model, we quantitatively and qualitatively demonstrate its usefulness for correcting erroneous sequences from off-the-shelf RGB/RGB-D hand-object reconstruction methods and transferring grasps across objects.