论文标题
在核物理学中使用数据增强的多层感知器的应用
Application of multilayer perceptron with data augmentation in nuclear physics
论文作者
论文摘要
神经网络在许多科学领域都变得流行,因为它们是有前途,可靠和强大的工具。在这项工作中,我们研究了数据增强对核物理数据神经网络模型的预测能力的影响。我们提供两种不同的数据增强技术,并根据不同的深度,优化器,激活功能和随机种子值进行详细的分析,以显示模型的成功和鲁棒性。首次使用实验不确定性进行数据扩展,人工提高了训练数据集的大小,并且研究了测试集的模型预测与实验数据之间的根平方误差的变化。我们的结果表明,数据增强降低了预测错误,稳定模型并防止过度拟合。在AME2020群众表中,还测试了MLP模型的外推能力,并测试了新测量的核,并且显示通过使用数据增强,预测可显着提高。
Neural networks have become popular in many fields of science since they serve as promising, reliable and powerful tools. In this work, we study the effect of data augmentation on the predictive power of neural network models for nuclear physics data. We present two different data augmentation techniques, and we conduct a detailed analysis in terms of different depths, optimizers, activation functions and random seed values to show the success and robustness of the model. Using the experimental uncertainties for data augmentation for the first time, the size of the training data set is artificially boosted and the changes in the root-mean-square error between the model predictions on the test set and the experimental data are investigated. Our results show that the data augmentation decreases the prediction errors, stabilizes the model and prevents overfitting. The extrapolation capabilities of the MLP models are also tested for newly measured nuclei in AME2020 mass table, and it is shown that the predictions are significantly improved by using data augmentation.