论文标题
大型卫星图像时间序列的数据立方体,用于农业监测
A Data Cube of Big Satellite Image Time-Series for Agriculture Monitoring
论文作者
论文摘要
共同农业政策(CAP)的现代化需要大规模和频繁监测农业用地。朝这个方向迈出,自由开放的卫星数据(即哨兵任务)已被广泛用作所需的高空间和时间分辨率地球观测的来源。然而,监视大规模的帽子构成了一个大数据问题,并使需要在基础架构和专有技术方面快速适应的帽子付款机构施加压力。因此,需要高效且易于使用的工具来获取,存储,处理和开发大型卫星数据。在这项工作中,我们介绍了农业监视数据立方体(ADC),该数据立方体是一个自动化,模块化的,端到端的框架,用于发现,预处理和索引光学和合成孔径雷达(SAR)图像中的多维多维数据集。我们还提供了ADC之外的一组功能强大的工具,包括i)大型卫星数据的分析已准备就绪的特征空间以供应下游机器学习任务; ii)支持卫星图像时间序列(SITS)通过与CAP监视的服务有关的卫星图像时间序列(SITS)分析(例如,检测趋势和事件,监视增长状态等)。从分析和机器学习任务中提取的知识返回到数据立方体,建立可扩展的国家特定知识库,这些知识库可以有效地回答复杂且多方面的地理空间查询。
The modernization of the Common Agricultural Policy (CAP) requires the large scale and frequent monitoring of agricultural land. Towards this direction, the free and open satellite data (i.e., Sentinel missions) have been extensively used as the sources for the required high spatial and temporal resolution Earth observations. Nevertheless, monitoring the CAP at large scales constitutes a big data problem and puts a strain on CAP paying agencies that need to adapt fast in terms of infrastructure and know-how. Hence, there is a need for efficient and easy-to-use tools for the acquisition, storage, processing and exploitation of big satellite data. In this work, we present the Agriculture monitoring Data Cube (ADC), which is an automated, modular, end-to-end framework for discovering, pre-processing and indexing optical and Synthetic Aperture Radar (SAR) images into a multidimensional cube. We also offer a set of powerful tools on top of the ADC, including i) the generation of analysis-ready feature spaces of big satellite data to feed downstream machine learning tasks and ii) the support of Satellite Image Time-Series (SITS) analysis via services pertinent to the monitoring of the CAP (e.g., detecting trends and events, monitoring the growth status etc.). The knowledge extracted from the SITS analyses and the machine learning tasks returns to the data cube, building scalable country-specific knowledge bases that can efficiently answer complex and multi-faceted geospatial queries.