论文标题

冰球:基于事件的相机的平行表面和卷积内核跟踪

PUCK: Parallel Surface and Convolution-kernel Tracking for Event-Based Cameras

论文作者

Gava, Luna, Monforte, Marco, Iacono, Massimiliano, Bartolozzi, Chiara, Glover, Arren

论文摘要

当将视力集成到机器人中以与目标相互作用,因为它们会影响系统的可靠性和稳定性,因此低延迟和准确性是基本要求。在这种情况下,传感器和算法的选择对于整个控制循环至关重要。事件 - 摄像机的技术可以保证在动态环境中快速的视觉传感,但需要一种跟踪算法,该算法可以跟上机器人自我动作所引起的高数据速率,同时保持对分散因子的准确性和稳健性。在本文中,我们引入了一种新颖的跟踪方法,该方法利用指数降低的序列表面(ERO)数据表示形式来解除事件的处理和跟踪计算。使用卷积内核进行后者,以检测并遵循在平面上移动的圆形目标。为了基于最新的事件跟踪,我们提出了跟踪曲棍球冰球在表面上滑动的任务,未来的目的是控制ICUB机器人准确地和准时到达目标。实验结果表明,当机器人静止和移动时,我们的算法在低潜伏期和跟踪准确性之间达到了最佳折衷。

Low latency and accuracy are fundamental requirements when vision is integrated in robots for high-speed interaction with targets, since they affect system reliability and stability. In such a scenario, the choice of the sensor and algorithms is important for the entire control loop. The technology of event-cameras can guarantee fast visual sensing in dynamic environments, but requires a tracking algorithm that can keep up with the high data rate induced by the robot ego-motion while maintaining accuracy and robustness to distractors. In this paper, we introduce a novel tracking method that leverages the Exponential Reduced Ordinal Surface (EROS) data representation to decouple event-by-event processing and tracking computation. The latter is performed using convolution kernels to detect and follow a circular target moving on a plane. To benchmark state-of-the-art event-based tracking, we propose the task of tracking the air hockey puck sliding on a surface, with the future aim of controlling the iCub robot to reach the target precisely and on time. Experimental results demonstrate that our algorithm achieves the best compromise between low latency and tracking accuracy both when the robot is still and when moving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源