论文标题

基于地图集的胎儿和新生儿脑部分割和分析的自动管道

An automatic pipeline for atlas-based fetal and neonatal brain segmentation and analysis

论文作者

Urru, Andrea, Nakaki, Ayako, Benkarim, Oualid, Crovetto, Francesca, Segales, Laura, Comte, Valentin, Hahner, Nadine, Eixarch, Elisenda, Gratacós, Eduard, Crispi, Fàtima, Piella, Gemma, Ballester, Miguel A González

论文摘要

磁共振成像(MRI)中围产期脑结构的自动分割对于研究脑生长和相关并发症至关重要。尽管存在针对成人和小儿MRI数据的不同方法,但缺乏用于分析围产期成像的自动工具。在这项工作中,已经开发了一条新的胎儿和新生儿分割的管道。我们还报告了基于新型的注册方法,报告了两个新的胎儿地图集的创建,以及它们在基于地图集的分段中的使用。该管道还能够提取皮质和曲面表面以及计算特征,例如曲率,厚度,硫深度和局部回旋指数。结果表明,与专家注释相比,与参考管道(开发人类连接组项目(DHCP))相比,新模板的引入以及我们的分割策略以及更好的表现可取得准确的结果。

The automatic segmentation of perinatal brain structures in magnetic resonance imaging (MRI) is of utmost importance for the study of brain growth and related complications. While different methods exist for adult and pediatric MRI data, there is a lack for automatic tools for the analysis of perinatal imaging. In this work, a new pipeline for fetal and neonatal segmentation has been developed. We also report the creation of two new fetal atlases, and their use within the pipeline for atlas-based segmentation, based on novel registration methods. The pipeline is also able to extract cortical and pial surfaces and compute features, such as curvature, thickness, sulcal depth, and local gyrification index. Results show that the introduction of the new templates together with our segmentation strategy leads to accurate results when compared to expert annotations, as well as better performances when compared to a reference pipeline (developing Human Connectome Project (dHCP)), for both early and late-onset fetal brains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源