论文标题

热超级乔格控制NB-MO-TA-W合金中的高温强度

Thermal super-jogs control high-temperature strength in Nb-Mo-Ta-W alloys

论文作者

He, Sicong, Zhou, Xinran, Mordehai, Dan, Marian, Jaime

论文摘要

具有以身体为中心(BCC)结构的难治性多元素合金(RMEA)在过去十年中一直是大量研究的对象,因为它们是高温应用的候选材料的高潜力。这些合金中的大多数在高温下表现出显着的强度,这不能由由热激活的螺钉脱位运动支配的BCC可塑性的标准模型来解释。对NB-MO-TA-W合金的最新研究表明,边缘错位对变形的作用增强,这通常归因于材料中的原子级化学波动及其在滑动过程中与脱位核的相互作用。但是,尽管该模型由于合金的化学复杂性而产生了增强作用,但不足以解释其在整个热范围内的强度。在这里,我们提出了一种新的机制,该机制捕获了有关增强晶格增强的现有理论和直接从RMEA的化学复杂性散发出的热激活成分。这种组成复杂性导致独特的空置形成能量分布,其尾部延伸到负能,从而自发,即在边缘错位核心处,空位,空位形成。这些空位在错位线上放松到原子尺寸的超级乔格中,充当额外的固定点,增加了位错的激活应力。同时,这些超级jog可以沿着滑行方向扩散地置换,从而缓解了运动的一些额外压力,从而抵消了由于慢跑而引起的硬化效果。这两个过程与温度的函数之间的相互作用赋予了在中间到高温下边缘位错的额外强度,这与NB-MO-TA-W中的实验测量以及许多不同的RMEA中的实验测量很吻合。

Refractory multi-element alloys (RMEA) with body-centered cubic (bcc) structure have been the object of much research over the last decade due to their high potential as candidate materials for high-temperature applications. Most of these alloys display a remarkable strength at high temperatures, which cannot be explained by the standard model of bcc plasticity dominated by thermally-activated screw dislocation motion. Recent research on Nb-Mo-Ta-W alloys points to a heightened role of edge dislocations on deformation, which is generally attributed to atomic-level chemical fluctuations in the material and their interactions with dislocation cores during slip. However, while this model accounts for a strengthening effect due to the chemical complexity of the alloy, it is not sufficient to explain its strength across the entire thermal range. Here we propose a new mechanism that captures the existing theories about enhanced lattice strengthening and a thermally-activated component that emanates directly from the chemical complexity of the RMEA. This compositional complexity results in unique vacancy formation energy distributions with tails that extend into negative energies, leading to spontaneous, i.e., athermal, vacancy formation at edge dislocation cores. These vacancies relax into atomic-sized super-jogs on the dislocation line, acting as extra pinning points that increase the activation stress of the dislocation. At the same time, these super-jogs can displace diffusively along the glide direction, relieving with their motion some of the extra stress, thus countering the hardening effect due to jog-pinning. The interplay between these two processes as a function of temperature confers an extra strength to edge dislocation at intermediate-to-high temperatures, in remarkable agreement with experimental measurements in Nb-Mo-Ta-W and across a number of different RMEA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源