论文标题

拓扑绝缘子 - 抗铁磁双层结构

Surface plasmon-phonon-magnon polariton in a topological insulator-antiferromagnetic bilayer structure

论文作者

To, D. Quang, Wang, Zhengtianye, Liu, Yongchen, Wu, Weipeng, Jungfleisch, M. Benjamin, Xiao, John Q., Zide, Joshua M. O., Law, Stephanie, Doty, Matthew F.

论文摘要

我们提出了一种强大的技术,用于在杂交材料中研究表面偏振元模式。我们使用一个半古典模型,使我们能够理解混合系统集体激发之间的相互作用背后的物理,并开发出散射和传递矩阵方法,该方法强加了适当的边界条件来求解麦克斯韦方程,并得出了一个通用方程,并描述了n组成材料的异质结构中的表面极化。我们将此方法应用于由拓扑绝缘子(TI)和抗铁磁材料(AFM)组成的测试结构,以研究所得的表面狄拉克等电磁表等电磁体polariton(DPPMP)。我们发现,两种成分的激发之间的相互作用导致杂交模式的形成以及DPPMP分散关系中避免跨的点的出现。对于BI2SE3 Ti材料的特定情况,北极子分支在增加Ti薄膜的厚度后,低频低于2 Thz红移,这导致在TI层的厚度上的上限,这将允许可观察到的强耦合和杂交状态的出现。我们还发现,Ti和AFM之间的耦合的强度是通过在镁谐振频率下避免在两个极性分支之间划分的幅度的参数,取决于磁性偶极子的大小以及AFM材料的磁坚元的线宽度以及fermi of fermi offermi plassmon的磁通材料的宽度。最后,我们预测,具有极高质量的材料,即低散射损失率,对于实现Ti和AFM之间实验可观的强耦合至关重要。

We present a robust technique for computationally studying surface polariton modes in hybrid materials. We use a semi-classical model that allows us to understand the physics behind the interactions between collective excitations of the hybrid system and develop a scattering and transfer matrix method that imposes the proper boundary conditions to solve Maxwell equations and derive a general equation describing the surface polariton in a heterostructure consisting of N constituent materials. We apply this method to a test structure composed of a topological insulator (TI) and an antiferromagnetic material (AFM) to study the resulting surface Dirac plasmon-phonon-magnon polariton (DPPMP). We find that interactions between the excitations of the two constituents result in the formation of hybridized modes and the emergence of avoided-crossing points in the dispersion relations for the DPPMP. For the specific case of a Bi2Se3 TI material, the polariton branch with low frequency below 2 THz redshifts upon increasing the thickness of TI thin film, which leads to an upper bound on the thickness of the TI layer that will allow an observable signature of strong coupling and the emergence of hybridized states. We also find that the strength of the coupling between the TI and the AFM, which is parameterized by the amplitude of the avoided-crossing splitting between the two polariton branches at the magnon resonance frequency, depends on the magnitude of the magnetic dipole and the line width of the magnon in the AFM material as well as on the Fermi energy of Dirac plasmon in the TI. Finally, we predict that materials with extremely high quality, i.e. low scattering loss rate, are essential to achieve an experimentally-observable strong coupling between a TI and AFM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源