论文标题
拥有QWEP的不确定性
The undecidability of having the QWEP
论文作者
论文摘要
我们表明,具有Kirchberg的QWEP属性的C*-Algebras类别都不是QWEP属性的W* - 概率空间的类别,实际上是可有效的(用适当的语言)。后一个结果来自更一般的结果,即高限量III $ _1 $因子在W* - 概率空间的语言中没有可计算的通用理论。我们还证明,Powers的因子$ \ MATHCAL {R}_λ$,以$ 0 <λ<1 $的价格,当配备其规范权力状态时,没有可计算的通用理论。
We show that neither the class of C*-algebras with Kirchberg's QWEP property nor the class of W*-probability spaces with the QWEP property are effectively axiomatizable (in the appropriate languages). The latter result follows from a more general result, namely that the hyperfinite III$_1$ factor does not have a computable universal theory in the language of W*-probability spaces. We also prove that the Powers' factors $\mathcal{R}_λ$, for $0<λ<1$, when equipped with their canonical Powers' states, do not have computable universal theory.