论文标题

未知线性系统的基于SVR的观察者设计:复杂性和性能

SVR-based Observer Design for Unknown Linear Systems: Complexity and Performance

论文作者

Ding, Xuda, Wang, Han, He, Jianping, Chen, Cailian, Guan, Xinping

论文摘要

在本文中,我们考虑估计系统参数和设计稳定观察者的未知噪声线性时间流动(LTI)系统。我们提出了一个基于支持矢量回归(SVR)的估计器,以提供可调节的不对称误差间隔以进行估计。该估计器能够通过调整损失函数中的参数$γ> 0 $来权衡估计误差的偏差变化。此方法享受$ \ MATHCAL {O}(1/\ sqrt {n})$的相同样本复杂性与基于普通的最小平方(OLS)方法,但获得了$ \ Mathcal {O}(O}(1/(1/(γ+1)))$较小的方差。然后,提出了基于估计的稳定观察者增益设计程序。基于估计的观察性能通过均方观察误差进行评估,该误差可通过调整参数$γ$来调节,从而获得比OLS方法更高的可扩展性。还通过矩阵频谱和观察性能最优性分析来证明估计误差偏差偏差差异权衡的优势。进行了广泛的仿真验证,以验证具有不同$γ$和噪声设置的计算估计误差和性能最佳性。与OLS方法相比,使用正确设计的参数$γ$的估计误差和性能波动的差异较小。

In this paper we consider estimating the system parameters and designing stable observer for unknown noisy linear time-invariant (LTI) systems. We propose a Support Vector Regression (SVR) based estimator to provide adjustable asymmetric error interval for estimations. This estimator is capable to trade-off bias-variance of the estimation error by tuning parameter $γ> 0$ in the loss function. This method enjoys the same sample complexity of $\mathcal{O}(1/\sqrt{N})$ as the Ordinary Least Square (OLS) based methods but achieves a $\mathcal{O}(1/(γ+1))$ smaller variance. Then, a stable observer gain design procedure based on the estimations is proposed. The observation performance bound based on the estimations is evaluated by the mean square observation error, which is shown to be adjustable by tuning the parameter $γ$, thus achieving higher scalability than the OLS methods. The advantages of the estimation error bias-variance trade-off for observer design are also demonstrated through matrix spectrum and observation performance optimality analysis. Extensive simulation validations are conducted to verify the computed estimation error and performance optimality with different $γ$ and noise settings. The variances of the estimation error and the fluctuations in performance are smaller with a properly-designed parameter $γ$ compared with the OLS methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源