论文标题

学习以外部支持提供的稳定位置重新定向对象

Learning to Reorient Objects with Stable Placements Afforded by Extrinsic Supports

论文作者

Xu, Peng, Cheng, Hu, Wang, Jiankun, Meng, Max Q. -H.

论文摘要

通过使用支撑物重新定位对象是一项实用但具有挑战性的操纵任务。由于对象的复杂几何形状和机器人的约束可行运动,因此需要多个操纵步骤才能重新定位。在这项工作中,我们提出了一个管道,用于预测点云中的各种对象位置。该管道包括三个阶段:姿势生成阶段,其次是姿势细化阶段,并在放置分类阶段达到顶点。我们还提出了一种基于点云构造操作图的算法。确定可行的操作序列,以使机器人转移对象放置。模拟和现实世界实验都表明我们的方法是有效的。模拟结果强调了我们管道在随机开始姿势中概括为新物体的能力。与最先进的基线相比,我们预测的位置的准确性增强了20%。此外,机器人在我们算法构建的操作图中找到了可行的顺序步骤,以完成对象的重新定向操纵。

Reorienting objects by using supports is a practical yet challenging manipulation task. Owing to the intricate geometry of objects and the constrained feasible motions of the robot, multiple manipulation steps are required for object reorientation. In this work, we propose a pipeline for predicting various object placements from point clouds. This pipeline comprises three stages: a pose generation stage, followed by a pose refinement stage, and culminating in a placement classification stage. We also propose an algorithm to construct manipulation graphs based on point clouds. Feasible manipulation sequences are determined for the robot to transfer object placements. Both simulated and real-world experiments demonstrate that our approach is effective. The simulation results underscore our pipeline's capacity to generalize to novel objects in random start poses. Our predicted placements exhibit a 20% enhancement in accuracy compared to the state-of-the-art baseline. Furthermore, the robot finds feasible sequential steps in the manipulation graphs constructed by our algorithm to accomplish object reorientation manipulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源