论文标题

洛伦兹的不变性,散射幅度和半经典几何形状的出现

Lorentz Invariance, Scattering Amplitudes and the Emergence of Semiclassical Geometry

论文作者

Vaid, Deepak

论文摘要

一段时间以来,已经知道误差校正在确定量子重力中半经典几何形状的出现中起着基本作用。在这项工作中,我将几条不同的推理行连接起来,认为确实应该是这种情况。描述$ n $ basseless颗粒在平时时期的散射的运动学数据可以与量子几何相干状态一对一地对应。这些状态由Grassmannian $ gr_ {2,n} $中的点标记,可以将其视为标记量子错误校正代码的代码字。然后,可以将背景几何形状不变的状况理解为坐标转换应使代码子空间不变的要求。在本文中,我表明子系统(或操作员)量子错误校正代码的语言为理解粒子散射和量子几何形状的这些方面提供了适当的框架。

It has been known for some time now that error correction plays a fundamental role in the determining the emergence of semiclassical geometry in quantum gravity. In this work I connect several different lines of reasoning to argue that this should indeed be the case. The kinematic data which describes the scattering of $ N $ massless particles in flat spacetime can put in one-to-one correspondence with coherent states of quantum geometry. These states are labeled by points in the Grassmannian $ Gr_{2,n} $, which can be viewed as labeling the code-words of a quantum error correcting code. The condition of Lorentz invariance of the background geometry can then be understood as the requirement that co-ordinate transformations should leave the code subspace unchanged. In this essay I show that the language of subsystem (or operator) quantum error correcting codes provides the proper framework for understanding these aspects of particle scattering and quantum geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源