论文标题
Kronecker分解知识图嵌入
Kronecker Decomposition for Knowledge Graph Embeddings
论文作者
论文摘要
知识图嵌入研究主要集中于学习实体的连续表示以及针对链接预测问题的关系。最近的结果表明,在基准数据集上,当前方法的预测能力越来越不断提高。但是,这种有效性通常伴随着过度参数化和计算复杂性增加的成本。前者诱导广泛的超参数优化,以减轻恶意过度拟合。后者放大了赢得硬件彩票的重要性。在这里,我们研究了第一个问题的补救措施。我们提出了一种基于Kronecker分解的技术,以减少知识图嵌入模型中的参数数量,同时保留其表现力。通过Kronecker分解,在训练过程中,大型嵌入矩阵分为较小的嵌入矩阵。因此,知识图的嵌入不是清楚地检索的,而是在即时重建的。分解可确保将三个嵌入向量之间的元素相互作用扩展到每个嵌入向量中的相互作用。这隐含地降低了嵌入向量的冗余,并鼓励功能重复使用。为了量化kronecker分解对嵌入矩阵的影响,我们在基准数据集上进行了一系列实验。我们的实验表明,在嵌入矩阵上应用Kronecker分解会导致所有基准数据集的参数效率提高。此外,经验证据表明,在输入知识图中,重建的嵌入需要鲁棒性。为了培养可重复的研究,我们提供了我们方法的开源实施,包括培训和评估脚本以及我们的知识图嵌入框架(https://github.com/dice-group/dice-dice-embeddings)中的预训练模型。
Knowledge graph embedding research has mainly focused on learning continuous representations of entities and relations tailored towards the link prediction problem. Recent results indicate an ever increasing predictive ability of current approaches on benchmark datasets. However, this effectiveness often comes with the cost of over-parameterization and increased computationally complexity. The former induces extensive hyperparameter optimization to mitigate malicious overfitting. The latter magnifies the importance of winning the hardware lottery. Here, we investigate a remedy for the first problem. We propose a technique based on Kronecker decomposition to reduce the number of parameters in a knowledge graph embedding model, while retaining its expressiveness. Through Kronecker decomposition, large embedding matrices are split into smaller embedding matrices during the training process. Hence, embeddings of knowledge graphs are not plainly retrieved but reconstructed on the fly. The decomposition ensures that elementwise interactions between three embedding vectors are extended with interactions within each embedding vector. This implicitly reduces redundancy in embedding vectors and encourages feature reuse. To quantify the impact of applying Kronecker decomposition on embedding matrices, we conduct a series of experiments on benchmark datasets. Our experiments suggest that applying Kronecker decomposition on embedding matrices leads to an improved parameter efficiency on all benchmark datasets. Moreover, empirical evidence suggests that reconstructed embeddings entail robustness against noise in the input knowledge graph. To foster reproducible research, we provide an open-source implementation of our approach, including training and evaluation scripts as well as pre-trained models in our knowledge graph embedding framework (https://github.com/dice-group/dice-embeddings).