论文标题
Weyl局部可整合的保形重力,旋转曲线和宇宙丝
Weyl locally integrable conformal gravity, rotation curves and cosmic filaments
论文作者
论文摘要
Weyl的重力理论是爱因斯坦的一般相对论理论的扩展,该理论将指标与1形相关联。在局部可局部(封闭的非外科)1形式的情况下,时空歧管不再简单地连接。 Weil连接产生曲率张量,可满足Riemann曲率张量的基本特性。 RICCI张量是对称的,是形式不变的,用Weyl连接计算的Einstein Tensors表示,宇宙学术语与时空的函数和剪切应力张量替代了宇宙常数。提出了基于Schwarzschild公制的玩具模型,其中相关的1形式与Schwarzschild坐标成正比。这意味着整个Z轴的奇异性,并且对大地测量学产生了扭矩效应。根据初始条件,平面物质的速度几乎独立于r。在自由病例中,旋转效应发生在奇异性附近,这与最近关于宇宙细丝的观察结果相当。
Weyl's conformal theory of gravity is an extension of Einstein's theory of general relativity which associates metrics with 1-forms . In the case of locally integrable (closed non-exact) 1-forms the spacetime manifolds are no more simply connected. The Weil connections yield curvature tensors which satisfy the basic properties of Riemann curvature tensors. The Ricci tensors are symmetric, conformally invariant, and the Einstein tensors computed with the Weyl connections implicate a cosmological term replacing the cosmological constant by a function of spacetime, and a shear stress tensor. A toy model based on the Schwarzschild metric is presented where the associated 1-form is proportional to $dφ$ in Schwarzschild coordinates. This implies a singularity on the whole z-axis and it generates a torque effect on geodesics. According to initial conditions planar geodesics show almost constant velocities independently of r. In the free case spin effects occur in the neighbourhood of the singularity which are comparable to recent observations concerning cosmic filaments.