论文标题

关于链接图的有序序列,相对于reidemeister moves i和iii

On ordered sequences for link diagrams with respect to Reidemeister moves I and III

论文作者

Sasaki, Kishin

论文摘要

我们首先证明,通过应用Reidemeister I和III彼此转化的一对琐碎的结图不会通过一系列增加交叉数的依从数量I和III彼此转化,然后增加了一系列reidemeister moves iii,然后进行了reidemister iii,然后进行了redemeSters的序列。为了在链接图之间创建一个简单的序列,这些链接通过应用有限的许多Reidemester Moves I和III彼此转换,我们证明,链接图始终通过应用I传接处的有序序列相互转换。

We first prove that, infinitely many pairs of trivial knot diagrams that are transformed into each other by applying Reidemeister moves I and III are NOT transformed into each other by a sequence of the Reidemeister moves I that increase the number of crossings, followed by a sequence of Reidemeister moves III, followed by a sequence of the Reidemeister moves I that decrease the number of crossings. To create a simple sequence between link diagrams that are transformed into each other by applying finitely many Reidemeister moves I and III, we prove that the link diagrams are always transformed into each other by applying an I-generalized ordered sequence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源